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ance. The PSU(2, 2|4) metric gAB has both vector components gab and spinor components

gαβ , and in the limit where the spinor components gαβ are taken to infinity, the AdS5 ×S5

sigma model reduces to the worldsheet action in a flat background.

In this paper, we instead consider the limit where the vector components gab are taken to

infinity. In this limit, the AdS5 × S5 sigma model simplifies to a topological A-model con-

structed from fermionic N=2 superfields whose bosonic components transform like twistor

variables. Just as d=3 Chern-Simons theory can be described by the open string sector of

a topological A-model, the open string sector of this topological A-model describes d=4

N=4 super-Yang-Mills. These results might be useful for constructing a worldsheet proof

of the Maldacena conjecture analogous to the Gopakumar-Vafa-Ooguri worldsheet proof

of Chern-Simons/conifold duality.
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1. Introduction

Maldacena’s conjecture [1] relating d=4 N=4 super-Yang-Mills and the superstring on

AdS5×S5 has been verified in various limiting cases. However, in the limit where d=4 N=4

super-Yang-Mills is weakly coupled, it has been difficult to verify the conjecture because

the AdS5 × S5 background is highly curved. Although there exists a quantizable sigma

model description of the superstring in an AdS5 × S5 background using the pure spinor

formalism [2], the sigma model naively becomes strongly coupled when the AdS5 × S5

radius goes to zero.

In an AdS5 ×S5 background, the sigma model action using the pure spinor formalism

has the form [2 – 5]

S =
1

Λ

∫
d2z

[
1

2
ηabJ

aJ
b
+ η

αbβ

(
3

4
J

bβJ
α
−

1

4
J

bβ
Jα

)
+ ghost contribution

]
(1.1)
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where Ja for a = 0 to 9 and (Jα, J
bβ) for α, β̂ = 1 to 16 are bosonic and fermionic

PSU(2,2|4)
SO(4,1)×SO(5) currents constructed from the worldsheet Green-Schwarz variables (x, θ, θ̂)

as in the Metsaev-Tseytlin construction [6], ηab is the d=10 Minkowski metric and η
αbβ

=

(γ01234)
αbβ

. BRST invariance together with PSU(2, 2|4) invariance uniquely fixes the rela-

tive coefficients in the action, so the AdS5×S5 radius r only appears in the action through

the sigma model coupling constant Λ = α′/r2 where α′ is the inverse string tension. So the

sigma model seems to be strongly coupled when the AdS5 × S5 radius is small. However,

this conclusion may be too naive since it assumes that the PSU(2, 2|4) algebra remains

undeformed when the AdS5 × S5 radius is taken to zero.

One limit of the sigma model which is well-understood is the d=10 flat space limit

where the AdS5 × S5 radius goes to infinity. Naively, one would go to the flat space limit

by simply taking Λ → 0, however, this limit would preserve PSU(2, 2|4) invariance instead

of the desired d=10 super-Poincaré invariance. The correct way to go to the flat space

limit is to rescale the spinor component of the PSU(2, 2|4) metric g
αbβ

= η
αbβ

to

g
αbβ

= rη
αbβ

(1.2)

in the sigma model action of (1.1), together with an appropriate rescaling of the PSU(2, 2|4)

structure constaints. In the limit where r goes to infinity, the PSU(2, 2|4) algebra is

deformed into the d=10 super-Poincaré algebra and the second-order kinetic term for the

fermions in (1.1) blows up. Nevertheless, this limit can be taken smoothly by writing

the second-order kinetic term rη
αbβ

J
bβJ

α
as the first-order kinetic term J

α
dα + J

bβ d̂bβ
+

r−1ηαbβdαd̂bβ
where dα and d̂bβ

are auxiliary fermionic variables. In the limit where r → ∞,

one obtains a first-order action for the worldsheet fermions (θα, dα) and (θ̂
bβ, d̂bβ

), which is

the flat space version of the worldsheet action using the pure spinor formalism.

Since the structure constants of the algebra are related to the superspace torsions

TAB
C , this limiting procedure can be understood as a rescaling of the AdS5×S5 superspace

torsions into the flat superpace torsions. In an AdS5 × S5 background, Tαa
bβ and Tαβ

a are

non-vanishing torsions which are related by Tαa
bβη

β bβ
= Tαβ

bηab. On the other hand, in

a flat background, Tαβ
a is non-vanishing and Tαa

bβ = 0. The rescaling of the structure

constants and g
αbβ

as in (1.2) rescales the torsions such that

Tαβ
bηab

Tαa
bβη

β bβ

= r. (1.3)

So when r → ∞, Tαa
bβ → 0 which corresponds to flat space.

In this paper, we will consider a different limit of the AdS5×S5 sigma model in which,

instead of the spinor component of the PSU(2, 2|4) metric g
αbβ

being rescaled, the vector

component gab will be rescaled as

gab = r−1ηab. (1.4)

Furthermore, the PSU(2, 2|4) structure constants will be rescaled such that in the limit

where r → 0, the PSU(2, 2|4) superalgebra is deformed into an SU(2, 2) × SU(4) bosonic

– 2 –
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algebra with 32 abelian fermionic symmetries. This corresponds to rescaling the torsions

such that (1.3) remains satisfied when r → 0, which implies that the resulting background

has non-vanishing Tαa
bβ but has Tαβ

a = 0. Since the usual construction of supergravity

backgrounds assumes that Tαβ
a = γa

αβ [7], this r → 0 limit does not correspond to a

standard supergravity background.

Nevertheless, the resulting sigma model action when Tαβ
a → 0 is very simple and can

be expressed as a linear N=2 sigma model constructed from 16 chiral and antichiral N=2

superfields denoted by Θrj and Θjr, where r = 1 to 4 are SU(2, 2) indices and j = 1 to 4 are

SU(4) indices. Unlike the bosonic superfields in standard N=2 sigma models, Θrj and Θjr

are fermionic superfields. It is interesting that in the open-closed matrix model duality of

[8], the matter variables are also described by fermions with a second-order kinetic action.

The lowest components of Θrj and Θjr are linear combinations of the θ and θ̂ variables,

and the bosonic components of Θrj and Θjr are twistor-like combinations of the ten x’s

and 22 pure spinor ghosts. Just as the fermionic variables had a first-order kinetic action

in the flat space sigma model obtained by rescaling (1.2), the bosonic variables now have

a first-order kinetic action in the N=2 sigma model obtained by rescaling (1.4).

Moreover, this N=2 sigma model is twisted as an A-model where the pure spinor BRST

operator from the original AdS5 ×S5 sigma model acts in the usual topological manner as

the scalar worldsheet supersymmetry generator. So the N=2 sigma model is a topological

A-model with the worldsheet action

S =

∫
d2zd4κ ΘjrΘ

rj (1.5)

where (κ+, κ+, κ−, κ−) are the Grassmann parameters of the N=(2,2) superspace. This

model is invariant under the bosonic isometries SU(2, 2) × SU(4) × U(1) which act on the

superfields as

δΘrj = iΛr
sΘ

sj + iΘrkΩj
k + iΣΘrj, δΘjr = −iΘ

js
Λs

r − iΩk
j Θkr − iΣΘjr, (1.6)

where (Λr
s,Ω

k
j ,Σ) are constant parameters satisfying Λr

r = Ωj
j = 0, and is invariant under

the 32 abelian fermionic isometries

δΘrj = αrj , δΘjr = αjr (1.7)

where αrj and αjr are constant Grassmann parameters. Note that the bosonic isometries

of this model include a “bonus” U(1) symmetry [9] in addition to the SU(2, 2) × SU(4)

isometries of the original AdS5 × S5 sigma model.

Introducing fermionic worldsheet superfields whose bosonic components are twistor-

like coordinates has been useful in classical descriptions of the superstring where kappa-

symmetry is replaced by worldsheet supersymmetry [10 – 12]. The N=2 model in this paper

shares many features with this “super-embedding” approach, however, it has the advantage

of being quantizable because of the second-order action for the fermionic superfields. Since

the second-order action for fermionic superfields is generated by the Ramond-Ramond

background, it might be possible to generalize the twistor-like methods of this paper to

more general Ramond-Ramond backgrounds.

– 3 –



J
H
E
P
0
8
(
2
0
0
7
)
0
1
1

The abelianization of the fermionic isometries of (1.7) comes from setting Tαβ
a = 0 and

means that the supersymmetry generators anticommute with each other. To relate this

model to super-Yang-Mills where supersymmetry acts in the conventional way, it is useful

to interpret (1.5) as the limit of a non-linear topological A-model which is constructed such

that the isometries of (1.6) and (1.7) are deformed into SU(2, 2|4) isometries.

The worldsheet action for this non-linear topological A-model is

S =
1

Λ

∫
d2zd4κ

[
ΘrjΘ

jr −
1

2R2
ΘrjΘ

jsΘskΘ
kr +

1

3R4
ΘrjΘ

jsΘskΘ
ktΘtlΘ

lr + · · ·

]
(1.8)

=
R2

Λ

∫
d2zd4κTr

[
log

(
1 +

1

R2
ΘΘ

)]

where R is a new parameter which, in the limit R → ∞, takes the non-linear sigma

model into the linear sigma model of (1.5). This non-linear action will be shown to be

one-loop conformally invariant, and is invariant under the same SU(2, 2) × SU(4) × U(1)

transformations as (1.6). But the fermionic transformations of (1.7) are modified to

δΘrj = αrj +
1

R2
ΘrkαksΘ

sj, δΘjr = αjr +
1

R2
Θjsα

skΘkr, (1.9)

which anticommute to form the superalgebra SU(2, 2|4).

It will be conjectured that the BRST cohomology in the closed string sector of this

non-linear topological A-model is trivial, which implies that the open string physical states

are independent of R and Λ in (1.8). This would be similar to the topological A-model

for d=3 Chern-Simons which has physical states only in the open string sector [13], but

would be different from the topological B-model for the twistor-string [14] which describes

N=4 d=4 super-Yang-Mills in the open sector and N=4 d=4 conformal supergravity in the

closed sector.

In the topological A-model for d=3 Chern-Simons, the open string boundary condi-

tions are XI = XI where XI and XI are chiral and anti-chiral superfields for I = 1 to

3. Similarly, the open string boundary conditions in the non-linear topological A-model

of (1.8) are Θrj = Θjr. These boundary conditions eliminate half of the 32 θ’s and break

SU(2, 2|4) invariance down to an OSp(4|4) subgroup, which is the N=4 supersymmetry al-

gebra on AdS4. In this open topological A-model, the BRST cohomology of physical states

will be shown to describe d=4 N=4 super-Yang-Mills, where the bosonic components of

Θrj are interpreted as twistor coordinates constructed from the four x’s of AdS4 together

with an N=4 d=4 pure spinor.

The similarities between Chern-Simons and N=4 d=4 super-Yang-Mills are not sur-

prising since, using the pure spinor formalism, the d=10 super-Yang-Mills action can be

written in the Chern-Simons form S = 〈V QV + 2
3V 3〉 where Q is the pure spinor BRST

operator and V is the super-Yang-Mills vertex operator [15, 16]. Furthermore, there is

a gauge/geometry correspondence relating Chern-Simons and the resolved conifold which

has many features in common with the Maldacena conjecture relating N=4 d=4 super-

Yang-Mills and AdS5 ×S5. The Chern-Simons/conifold correspondence was first proposed

by Gopakumar and Vafa [17], and was later proven using open-closed duality arguments

by Ooguri and Vafa [18].

– 4 –
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The basic idea behind the open-closed duality proof of Gopakumar-Vafa-Ooguri is that,

in a certain limit, the closed topological string theory for the resolved conifold geometry

develops a new branch corresponding to “holes” on the closed worldsheet. These holes

were then shown to correspond to the open string sector of the topological A-model that

describes d=3 Chern-Simons.

Since the open string sector of the topological A-model in this paper describes d=4

N=4 super-Yang-Mills, and since this topological A-model is related to a certain limit of

the closed superstring in an AdS5 × S5 background, it is natural to try to construct a

similar open-closed duality proof for the Maldacena conjecture. However, there are some

questions that need to be answered before such a proof can be attempted.

One question is to explain the interpretation of the torsion ratio of (1.3) as the AdS×S5

radius. Although this interpretation is easily understood in the flat space limit where

r → ∞, it is not obvious this interpretation is correct in the limit where r → 0. So it

is not clear that the limit discussed in this paper corresponds to weak coupling on the

super-Yang-Mills side of the duality.

A second question is to compute the complete cohomology of physical states for the

topological A-model of (1.8). Although it will be shown that the cohomology in the open

string sector of this A-model describes d=4 N=4 super-Yang-Mills, it remains to be shown

that there are no physical states in the closed string sector of this A-model.

Finally, a third question which needs to be answered is if the open string topological

A-model in this paper can be interpreted as a branch of the closed string AdS5 ×S5 sigma

model which emerges in the limit where Tαβ
a → 0. Perhaps the “bonus” U(1) symmetry

in (1.6) will play a role in the emergence of this branch.

In section 2 of this paper, the AdS5 ×S5 sigma model using the pure spinor formalism

is reviewed and the flat space limit is discussed. In section 3, the AdS5 × S5 sigma model

is shown to reduce to a linear topological A-model in the limit where Tαβ
a → 0. In

section 4, this linear topological A-model is deformed into a non-linear topological A-model

with PSU(2, 2|4) invariance. And in section 5, the open string sector of this non-linear

topological A-model is shown to describe d=4 N=4 super-Yang-Mills.

2. Review of pure spinor formalism in AdS5 × S5 background

Using the pure spinor formalism, the superstring can be quantized in any consistent d=10

supergravity background [19]. Unlike the Green-Schwarz formalism where the gauge-fixing

procedure of kappa-symmetry is poorly understood even in a flat background, the pure

spinor formalism is quantized using a BRST operator which can be defined in any consistent

supergravity background. In an AdS5 × S5 background, the BRST transformations act in

a geometric manner, which has been useful for proving the quantum consistency of this

background [5].

2.1 Sigma model action

The sigma model for the superstring in an AdS5×S5 background is manifestly PSU(2, 2|4)-

– 5 –
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invariant and is constructed from the Metsaev-Tseytlin left-invariant currents [6]

JA = (G−1∂G)A, J
A

= (G−1∂G)A, (2.1)

where G(x, θ, θ̂) takes values in the coset PSU(2,2|4)
SO(4,1)×SO(5) , A = ([ab], c, α, α̂) ranges over the

30 bosonic and 32 fermionic elements in the Lie algebra of PSU(2, 2|4), [ab] labels the

SO(4, 1)× SO(5) “Lorentz” generators, c = 0 to 9 labels the “translation” generators, and

α, α̂ = 1 to 16 label the fermionic “supersymmetry” generators.

Although the AdS5 × S5 background only preserves an SO(4, 1) × SO(5) subgroup of

SO(9, 1) Lorentz-invariance, it will sometimes be convenient to use SO(9, 1) 16-component

notation for the spinor indices. Throughout this paper, both α and α̂ labels a 16-component

Majorana-Weyl spinor index when it is a superscript, and labels a 16-component Majorana-

antiWeyl spinor index when it is a subscript. Even though α and α̂ label spinors of the

same ten-dimensional spacetime chirality, it will be convenient to use two types of indices

where unhatted indices are associated with spinors coming from the left-moving sector of

the Type IIB superstring and hatted indices are associated with spinors coming from the

right-moving sector.

As in a flat background, the matrices γc
αβ and (γc)αβ matrices are 16 × 16 symmetric

matrices which form the off-diagonal blocks of the 32×32 ten-dimensional Γ-matrices, and

which satisfy the anticommutation relation γc
αβ(γd)βγ + γd

αβ(γc)βγ = 2ηcdδγ
a . The matrices

γ[c1...cN ] are constructed in the usual way by multiplying products of γc, e.g. (γ[cd])α
γ =

γ
[c
αβ(γd])βγ , and satisfy the property that γc1c2c3

αβ = −γc1c2c3
βα and γc1c2c3c4c5

αβ = γc1c2c3c4c5
βα .

The five-form γ01234
αbβ

which is in the direction of the Ramond-Ramond flux will be denoted

as η
αbβ

.

Under SO(4, 1)×SO(5), a 16-component spinor fα decomposes into f r′j′ where r′ = 1

to 4 is an SO(4, 1) spinor index and j′ = 1 to 4 is an SO(5) spinor index. (Note that

r′ and j′ indices can be raised and lowered in an SO(4, 1) × SO(5) invariant manner.) If

one expresses JA = (G−1∂G)A as an 8 × 8 matrix which takes values in the Lie-algebra

of PSU(2, 2|4), the upper right-hand off-diagonal 4 × 4 block Jr′

j′ is obtained from the

SO(4, 1) × SO(5) decomposition of the 16-component spinor Jα + iJ bα, whereas the lower

left-hand off-diagonal 4× 4 block Jj′

r′ is obtained from the SO(4, 1)× SO(5) decomposition

of the 16-component spinor Jα − iJ bα.

The action in the pure spinor formalism involves left and right-moving bosonic ghosts,

(λα, wα) and (λ̂bα, ŵbα), which satisfy the pure spinor constraints λγcλ = λ̂γcλ̂ = 0. Because

of the pure spinor constraints, wα and ŵbα can only appear in combinations which are

invariant under the gauge transformations

δwα = ξc(γcλ)α, δŵbα = ξ̂c(γcλ̂)bα. (2.2)

As in standard coset constructions, the PSU(2,2|4)
SO(4,1)×SO(5) coset G(x, θ, θ̂) is defined up to

right multiplication by a local SO(4, 1) × SO(5) parameter Ω[ab](x, θ, θ̂) as

δG(x, θ, θ̂) = G(x, θ, θ̂) (Ω[ab](x, θ, θ̂)T[ab]) (2.3)

– 6 –
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where T[ab] are the SO(4, 1) × SO(5) generators. Under these gauge transformations, the

pure spinors are defined to transform covariantly as

δλα = −
1

2
Ω[ab](γ[ab]λ)α, δwα =

1

2
Ω[ab](γ[ab]w)α, (2.4)

δλ̂bα = −
1

2
Ω[ab](γ[ab]λ)bα, δŵbα =

1

2
Ω[ab](γ[ab]ŵ)bα.

A convenient way to write the sigma model action in a manifestly gauge-invariant manner

is [20, 2]

S =
1

Λ

∫
d2z

[
1

2
ηAB(JA −AA)(J

B
−A

B
) (2.5)

+B + wα

(
∂λ +

1

2
A

[ab]
γ[ab]λ

)α

+ ŵbα

(
∂λ̂ +

1

2
A[ab]γ[ab]λ̂

)bα]

=
1

Λ

∫
d2z

[
1

2
η[ab][cd](J

[ab] −A[ab])(J
[cd]

−A
[cd]

) +
1

2
ηcdJ

cJ
d
+

1

4
η

αbβ
(J

bβJ
α

+ J
bβ
Jα)

+
1

2
η

αbβ
(J

bβJ
α
− J

bβ
Jα) + wα

(
∂λ +

1

2
A

[ab]
γ[ab]λ

)α

+ ŵbα

(
∂λ̂ +

1

2
A[ab]γ[ab]λ̂

)bα]
,

where ηAB is the PSU(2, 2|4) metric, η[ab][cd] = ηa[cηd]b when a, b, c, d = 0 to 4, η[ab][cd] =

−ηa[cηd]b when a, b, c, d = 5 to 9, ηcd is the d=10 Minkowski metric, η
αbβ

= (γ01234)
αbβ

, A[ab]

and A
[ab]

are worldsheet SO(4, 1) × SO(5) gauge fields, and B is the Wess-Zumino term

which in an AdS5 × S5 background takes the simple form [20]

B =
1

2
η

αbβ
(J

bβJ
α
− J

bβ
Jα). (2.6)

Since A[ab] and A
[ab]

satisfy auxiliary equations of motion, they can be integrated out

to obtain the action

S =
1

Λ

∫
d2z

[
1

2
ηcdJ

cJ
d

+ η
αbβ

(
3

4
J

bβJ
α
−

1

4
J

bβ
Jα

)
(2.7)

+wα(∇λ)α + ŵbα(∇λ̂)bα −
1

2
η[ab][cd](wγ[ab]λ)(ŵγ[cd]λ̂)

]
,

where (∇λ)α = ∂λα + 1
2J

[ab]
(γ[ab]λ)α and (∇λ̂)bα = ∂λ̂bα + 1

2J [ab](γ[ab]λ̂)bα. Using the Maurer-

Cartan equations, the action of (2.7) can be shown to be invariant under the BRST trans-

formation generated by [3]

Q + Q =

∫
dz ηαbαλαJ bα +

∫
dzηαbαλ̂bαJ

α
(2.8)

which transform the PSU(2,2|4)
SO(4,1)×SO(5) coset and pure spinor ghosts as

δG = G(ǫλαTα + ǫλ̂bαTbα), δwα = ǫη
αbβ

J
bβ , δŵbα = ǫη

αbβ
J

bβ
, (2.9)

where Tα and Tbα are the 32 fermionic generators of PSU(2, 2|4) and ǫ is a constant Grass-

mann parameter.
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This BRST invariance, together with PSU(2, 2|4) invariance, fixes the relative coeffi-

cients of the terms in the sigma model action of (2.7). So, naively, the AdS5 × S5 radius r

can only appear in the action through the coupling constant Λ = α′/r2. However, if one

allows the PSU(2, 2|4) algebra to be deformed as the value of r is changed, the r depen-

dence of the action can be more complicated and the form of the action can be modified.

For example, in the flat space limit where r → ∞, the PSU(2, 2|4) algebra is deformed to

the N=2 d=10 super-Poincaré algebra. As will now be discussed, this modifies the sigma

model action of (2.7) to a quadratic action.

2.2 Flat space limit

Although the naive limit as r → ∞ is obtained by simply taking Λ → 0 in the sigma model

action of (2.7), this limit would preserve PSU(2, 2|4) invariance instead of the desired

N=2 d=10 super-Poincaré invariance of flat Minkowski superspace. To obtain the correct

flat space limit, one needs to rescale the PSU(2, 2|4) structure constants such that when

r → ∞, the PSU(2, 2|4) algebra is deformed into the N=2 d=10 super-Poincaré algebra.

The non-vanishing PSU(2, 2|4) structure constants fC
AB are

f c
αβ = γc

αβ , f c

bαbβ
= γc

αβ , (2.10)

f
bβ
αc = −γcαβηβ bβ , fβ

bαc
= −γ

cbαbβ
ηβ bβ ,

f
[ef ]

αbβ
= ±(γef )α

γη
γ bβ

, f
[ef ]
cd = ±δ[e

c δ
f ]
d ,

f
[gh]
[cd][ef ] = ηceδ

[g
d δ

h]
f − ηcfδ

[g
d δh]

e + ηdfδ[g
c δh]

e − ηdeδ
[g
c δ

h]
f ,

f f
[cd]e = ηe[cδ

f
d], fβ

[cd]α =
1

2
(γcd)α

β, f
bβ
[cd]bα =

1

2
(γcd)bα

bβ,

where the + sign in the third line is if (c, d, e, f) = 0 to 4, and the − sign is if (c, d, e, f) = 5

to 9.

To deform these structure constants to the super-Poincaré structure constants in the

r → ∞ limit, one should rescale (2.10) such that

f c
αβ = γc

αβ , f c

bαbβ
= γc

αβ , (2.11)

f
bβ
αc = −r−1γcαβηβ bβ, fβ

bαc
= −r−1γ

cbαbβ
ηβ bβ,

f
[ef ]

αbβ
= ±r−2(γef )α

γη
γ bβ

, f
[ef ]
cd = ±r−2δ[e

c δ
f ]
d ,

f
[gh]
[cd][ef ] = ηceδ

[g
d δ

h]
f − ηcfδ

[g
d δh]

e + ηdfδ[g
c δh]

e − ηdeδ
[g
c δ

h]
f

f f
[cd]e = ηe[cδ

f
d], fβ

[cd]α =
1

2
(γcd)α

β, f
bβ
[cd]bα =

1

2
(γcd)bα

bβ.

The metric gAB should satisfy the property that fC
AB gCD is graded-antisymmetric

under permutations of [ABD], so the rescaling of (2.11) implies one should also rescale

g
αbβ

= η
αbβ

and g[ab][cd] = η[ab][cd] to

g
αbβ

= rη
αbβ

, g[ab][cd] = r2η[ab][cd]. (2.12)
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Since the structure constants fC
AB are proportional to the superspace torsions TAB

C ,

the rescaling of (2.11) implies that

Tαβ
bηab

Tαa
bβη

β bβ

= r. (2.13)

If Tαβ
b is fixed to satisfy Tαβ

b = γb
αβ, (2.13) implies that Tαc

bβ = r−1γcαβηβ bβ , which

is the correct r dependence since the AdS curvature Rabα
β goes like 1/r2, and Bianchi

identities imply that Rabα
β is proportional to Taα

γTbγ
β.

Since g
αbβ

= rη
αbβ

blows up when r → ∞, it is convenient to write the second-order

kinetic term for the fermions in (2.7) in the first-order form as

1

Λ

∫
d2zrη

αbβ

(
3

4
J

bβJ
α
−

1

4
J

bβ
Jα

)
(2.14)

=
1

Λ

∫
d2zrη

αbβ

(
1

2
J

bβJ
α

+
1

4
J

bβ ∧ Jα

)

=
1

Λ

∫
d2z

[
J

α
dα + J bαd̂bα + 2r−1ηαbβdαd̂bβ

+
1

4
rη

αbβ

∫
dσ3 d(J

bβ ∧ Jα)

]

=
1

Λ

∫
d2z

[
J

α
dα+J bαd̂bα+2r−1ηαbβdαd̂bβ

+
1

4

∫
dσ3

(
γcαβJc∧Jα∧J

bβ−γ
cbαbβ

Jc∧J bα∧J
bβ
)]

where dα and d̂bα are auxiliary variables and the two-form J
bβ ∧ Jα ≡ J

bβJ
α
− J

bβ
Jα has

been written as the integral of a Wess-Zumino-Witten three-form using the Maurer-Cartan

equations

dJ
bβ = f

bβ
cαJc ∧ Jα = r−1γcαβηβ bβJc ∧ Jα, (2.15)

dJβ = fβ
cbα

Jc ∧ J bα = r−1γ
cbαbβ

ηβ bβJc ∧ J bα. (2.16)

Furthermore, the BRST operator Q + Q of (2.8) can be written as

Q + Q =

∫
dzλαdα +

∫
dzλ̂bαd̂bα (2.17)

using the auxiliary equations of motion for dα and d̂bα.

When r = ∞, the left-invariant currents (Jc, Jα, J
bβ, J [ab]) simplify to

Jc = Πc = ∂xc + θγc∂θ + θ̂γc∂θ̂, Jα = ∂θα, J
bβ = ∂θ̂

bβ, J [ab] = 0. (2.18)

So the action of (2.7) reduces to

S =
1

Λ

∫
d2z

[
1

2
ηcdΠ

cΠ
d
− dα∂θα − d̂bα∂θ̂bα + wα∂λα + ŵbα∂λ̂bα

+
1

4

∫
dσ3(γcαβΠc ∧ ∂θα ∧ ∂θβ − γ

cbαbβ
Πc ∧ ∂θ̂bα ∧ ∂θ̂

bβ)

]
,

which is the worldsheet action in a flat background using the pure spinor formalism. By

defining

pα = dα + · · · , p̂bα = d̂bα + · · · (2.19)
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where . . . are functions of (x, θ, θ̂), this action can be written in quadratic form as [2]

S =
1

Λ

∫
d2z

[
1

2
ηcd∂xc∂xd − pα∂θα − p̂bα∂θ̂bα + wα∂λα + ŵbα∂λ̂bα

]
. (2.20)

3. New limit of sigma model

In the previous section, we constructed the flat space limit of the AdS5 × S5 sigma model

in which Tcα
bβ → 0 and Tαβ

c = γc
αβ. In this section, we shall consider a different limit of the

model in which Tαβ
c → 0 and Tcα

bβ = γcαβηβ bβ . If one defines r as in (2.13), this formally

corresponds to the limit r → 0 of the AdS5 × S5 background. However, since supergravity

backgrounds are usually defined such that Tαβ
c = γc

αβ [7], this limit cannot be identified

with a conventional supergravity background.

3.1 Tαβ
c → 0 limit

To construct the sigma model in this new limit, one needs to rescale the PSU(2, 2|4)

structure constants of (2.10) as

f c
αβ = rγc

αβ, f c

bαbβ
= rγc

αβ, (3.1)

f
bβ
αc = −γcαβηβ bβ, fβ

bαc
= −γ

cbαbβ
ηβ bβ,

f
[ef ]

αbβ
= ±r(γef )α

γη
γ bβ

, f
[ef ]
cd = ±δ[e

c δ
f ]
d ,

f
[gh]
[cd][ef ] = ηceδ

[g
d δ

h]
f − ηcfδ

[g
d δh]

e + ηdfδ[g
c δh]

e − ηdeδ
[g
c δ

h]
f

f f
[cd]e = ηe[cδ

f
d], fβ

[cd]α =
1

2
(γcd)α

β, f
bβ
[cd]bα =

1

2
(γcd)bα

bβ.

Furthermore, to preserve the graded-antisymmetry of fC
AB gCD under permutation of

[ABD], one needs to also rescale gab = ηab and g[ab][cd] = η[ab][cd] to

gab = r−1ηab, g[ab][cd] = r−1η[ab][cd]. (3.2)

When r → 0, the structure constants fA
αβ → 0 which implies that the 32 fermionic

isometries become abelian. In this limit, the PSU(2,2|4)
SO(4,1)×SO(5) coset G splits into a bosonic

coset Hr
r′ for r, r′ = 1 to 4 which parameterizes AdS5 = SU(2,2)

SO(4,1) , a bosonic coset H̃j
j′ for

j, j′ = 1 to 4 which parameterizes S5 = SU(4)
SO(5) , and two fermionic matrices θrj and θjr

for r, j = 1 to 4. The index r = 1 to 4 labels a fundamental representation of the global

SU(2, 2), and the index j = 1 to 4 labels a fundamental representation of the global SU(4).

Furthermore, the index r′ = 1 to 4 labels a spinor representation of the local SO(4, 1),

and the index j′ = 1 to 4 labels a spinor representation of of the local SO(5). Note that

r′ indices can be raised and lowered with an antisymmetric SO(4, 1)-invariant tensor ǫr′s′ ,

and j′ indices can be raised and lowered with an antisymmetric SO(5)-invariant tensor

ǫj′k′

. Under the 32 global fermionic isometries,

δθrj = αrj , δθjr = αjr, δHr
r′ = 0, δH̃j

j′ = 0, (3.3)
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where αrj and αjr are constant Grassmann parameters.

Since gab = r−1ηab blows up when r → 0, it is convenient to write the second-order

kinetic term for the bosons in the first-order form as

1

2Λ

∫
d2z

[
r−1η[ab][cd](J

[ab] −A[ab])(J
[cd]

−A
[cd]

) + r−1ηcdJ
cJ

d
]

(3.4)

=
1

Λ

∫
d2z

[
(J [ab] −A[ab])P [ab] + (J

[ab]
−A

[ab]
)P[ab] + JcP c + J

c
P c

+2r(η[ab][cd]P[ab]P [cd] + ηcdPcP d)
]

where [P[ab], P [ab], Pc, P c] are auxiliary fields. So the AdS5×S5 sigma model action of (2.5)

reduces in this limit r → 0 to

S =
1

Λ

∫
d2z

[
(J [ab] −A[ab])P [ab] + (J

[ab]
−A

[ab]
)P[ab] + JcP c + J

c
P c (3.5)

+
1

4
η

αbβ
(J

bβJ
α

+ J
bβ
Jα) + B + wα

(
∂λ +

1

2
A

[ab]
γ[ab]λ

)α

+ ŵbα

(
∂λ̂ +

1

2
A[ab]γ[ab]λ̂

)bα]

where B is the Wess-Zumino-Witten term of (2.6). Since
∫

d2zB = 1
2

∫
d2z

∫
dσ3(γcαβJc ∧

Jα ∧ Jβ − γ
cbαbβ

Jc ∧ J bα ∧ J
bβ), the Wess-Zumino-Witten term can be eliminated from the

action by shifting Pc and P c.

Furthermore, when r → 0, the currents Jc and J [cd] simplify to

Jc = (H−1∂H)s
′

r′(σ
c)r

′

s′ , J [cd] = (H−1∂H)s
′

r′(σ
[cd])r

′

s′ when c, d = 0 to 4, (3.6)

Jc = (H̃−1∂H̃)k
′

j′ (σ
c)j

′

k′ , J [cd] = (H̃−1∂H̃)k
′

j′ (σ
[cd])j

′

k′ when c, d = 5 to 9, (3.7)

where σc and σ[cd] are 4× 4 Pauli matrices which generate an SU(2, 2) algebra when c = 0

to 4, and generate an SU(4) algebra when c = 5 to 9. Expressing the SO(9, 1) spinors Jα

and J bα in terms of SO(4, 1) × SO(5) spinors as Jα = Jr′j′ and J bα = Ĵr′j′ , one finds that

when r → 0, Jr′j′ and Ĵr′j′ simplify to

Jr′j′ = (H−1)r
′

r (H̃−1)j
′

j ∂θrj + ǫr′s′ǫj′k′

Hr
s′H̃

j
k′∂θjr, (3.8)

Ĵr′j′ = (H−1)r
′

r (H̃−1)j
′

j ∂θrj − ǫr′s′ǫj′k′

Hr
s′H̃

j
k′∂θjr.

Plugging these currents into (3.5), one finds that the action simplifies to

S =
1

Λ

∫
d2z

[
(J [ab] −A[ab])P [ab] + (J

[ab]
−A

[ab]
)P[ab] + JcP c + J

c
P c (3.9)

+∂θjr∂θrj + wα

(
∂λ +

1

2
A

[ab]
γ[ab]λ

)α

+ ŵbα

(
∂λ̂ +

1

2
A[ab]γ[ab]λ̂

)bα]
.

3.2 Twistor-like variables

The final step in simplifying this action is to express the pure spinors in SO(4, 1) × SO(5)

notation as λα = λr′j′ and λ̂bα = λ̂r′j′ and to define the new variables Zrj and Zjr as

Zrj = Hr
r′H̃

j
j′λ

r′j′ , Zjr = (H−1)r
′

r (H̃−1)j
′

j λ̂j′r′ (3.10)
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where λ̂j′r′ = ǫj′k′ǫr′s′λ̂
s′k′

. Note that Zrj and Zjr are twistor-like variables since they

transform covariantly under the global SU(2, 2) × SU(4) isometries and since they are

constructed out of the pure spinors and the ten x’s parameterized by the cosets H and H̃.

Similarly, one can define the conjugate twistor-like variables Yjr and Y
rj

as

Yjr = (H−1)r
′

r (H̃−1)j
′

j wj′r′ , Y
rj

= Hr
r′H̃

j
j′ŵ

r′j′ (3.11)

where wα = wj′r′ and ŵbα = ǫj′k′ǫr′s′ŵ
s′k′

are the original conjugate pure spinor variables

written in SO(4, 1) × SO(5) notation.

Using

Yjr∂Zjr = wα∂λα + (H−1∂H)r
′

s′wj′r′λ
s′j′ + (H̃−1∂H̃)j

′

k′wj′r′λ
r′k′

, (3.12)

one finds that

wα∂λα = Yjr∂Zrj − (wσcλ)J
c
−

1

2
(wσ[cd]λ)J

[cd]
(3.13)

where (wσcλ) = wj′r′(σc)
r′

s′λ
s′j′ and (wσ[cd]λ) = wj′r′(σ[cd])

r′

s′λ
s′j′ for c = 0 to 4, and

(wσcλ) = wj′r′(σc)
j′

k′λr′k′

and (wσ[cd]λ) = wj′r′(σ[cd])
j′

k′λr′k′

for c = 5 to 9. Similarly,

ŵbα∂λ̂bα = Y
rj

∂Zjr − (ŵσcλ̂)Jc −
1

2
(ŵσ[cd]λ̂)J [cd]. (3.14)

So after defining

P ′c = P c − (wσcλ), P
′c

= P
c
− (ŵσcλ̂), (3.15)

P ′[cd] = P [cd] −
1

2
(wσ[cd]λ), P

′[cd]
= P

[cd]
−

1

2
(ŵσ[cd]λ̂),

one can write the action of (3.9) as

S =
1

Λ

∫
d2z

[
(J [ab] −A[ab])P

′
[ab] + (J

[ab]
−A

[ab]
)P ′

[ab] + JcP
′
c + J

c
P ′c (3.16)

+∂θjr∂θrj + Yjr∂Zrj + Y
rj

∂Zjr

]
.

The shift of (3.15) implies that under the gauge transformation δwα = ξc(γcλ)α and

δŵbα = ξ̂c(γcλ̂)bα of (2.2), P ′
c and P

′
c must transform as

δP ′
c = ξcǫr′s′ǫj′k′λr′jλs′k′

= ξc(λγ01234λ), (3.17)

δP
′
c = ξ̂cǫr′s′ǫj′k′

λ̂r′j λ̂s′k′ = ξ̂c(λ̂γ01234λ̂).

So assuming that (λγ01234λ) and (λ̂γ01234λ̂) are non-zero, one can use this invariance

to gauge-fix P ′c = P
′c

= 0. Furthermore, integrating out A[ab] and A
[ab]

implies that

P ′[ab] = P
′[ab]

= 0.

So finally, one can write the action in quadratic form as

S =
1

Λ

∫
d2z[∂θjr∂θrj + Yjr∂Zrj + Y

rj
∂Zjr]. (3.18)
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Instead of the original action containing ten x’s and 22 left and right-moving pure

spinors, (3.18) contains 16 left-moving and 16 right-moving unconstrained bosonic spinors.

So the second-order action for x has been converted into a first-order action for ten left and

right-moving bosons which effectively removes the constraint on the pure spinors. The re-

moval of the pure spinor constraint is related to the fact that Tαβ
c = 0 in this background.

Since the BRST operator acts as Q = λα∇α, Q2 = λαλβ{∇α,∇β} = λαλβTαβ
A∇A. When

Tαβ
c = γc

αβ , the pure spinor constaint λγcλ = 0 is required for Q to be nilpotent. How-

ever, when Tαβ
c = 0, the nilpotence of Q does not require λα to satisfy the pure spinor

constraint.

3.3 N = 2 worldsheet supersymmetry

In terms of the variables (θrj, θjr, Z
rj , Zjr, Yjr, Y

rj
), the BRST transformations are

δθrj = ǫZrj, δθjr = ǫZjr, δYjr = ǫ∂θrj , δY
rj

= ǫ∂θrj, (3.19)

which are generated by Q + Q where

Q =

∫
dzZrj∂θjr, Q =

∫
dzZjr∂θrj. (3.20)

Unlike in a flat background where it is difficult to construct b and b ghosts satisfying

{Q, b} = T and {Q, b} = T , it is easy to construct b and b ghosts in this background as

b = Yjr∂θrj, b = Y
rj

∂θjr, (3.21)

where

T = ∂θrj∂θjr + Yjr∂Zrj, T = ∂θrj∂θjr + Y
rj

∂Zjr. (3.22)

Since Yjr and Y
jr

have conformal weight (1, 0) and (0, 1), the action of (3.18) has

A-twisted N=(2,2) supersymmetry and can be interpreted as a topological A-model. This

topological A-model can be expressed in N=(2,2) superspace by combining the component

fields into the chiral and antichiral superfields

Θrj = θrj + κ+Zrj + κ−Y
rj

+ κ+κ−f rj, (3.23)

Θjr = θjr + κ+Yjr + κ−Zjr + κ+κ−f jr,

where (κ+, κ+) and (κ−, κ−) are the left and right-moving N=(2,2) Grassmann parameters,

and (f rj, f jr) are auxiliary fields.

In terms of Θrj and Θjr, the action of (3.18) is

S =
1

Λ

∫
d2z

∫
d4κΘjrΘ

rj, (3.24)

and the global bosonic isometries act as

δΘrj = iΛr
sΘ

sj + iΘrkΩj
k + iΣΘrj, δΘjr = −iΘjsΛ

s
r − iΩk

j Θkr − iΣΘjr, (3.25)

where (Λr
s,Ω

k
j ,Σ) are constant parameters satisfying Λr

r = Ωj
j = 0. Note that in addition

to the SU(2, 2) × SU(4) bosonic isometries, there is an additional “bonus” U(1) symmetry

parameterized by Σ. Under the fermionic isometries of (3.3), the superfields transform as

δΘrj = αrj , δΘjr = αjr. (3.26)
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4. Non-linear topological A-model

To compute the physical states of the linear topological A-model of (3.24), it will be useful

to define a non-linear topological A-model which reduces to the linear model of (3.24) in

a certain large-radius limit. In the non-linear model, the SU(2, 2) × SU(4) × U(1) bosonic

isometries will combine with the 32 fermionic isometries to form an SU(2, 2|4) supergroup.

Since this supergroup includes the PSU(2, 2|4) isometries of the AdS5 ×S5 background, it

is tempting to try to identify this non-linear topological A-model at large but finite radius

with the AdS5 × S5 sigma model at small but non-zero Tαβ
c. However, this identification

does not seem possible since when Tαβ
c is non-zero, the AdS5 × S5 sigma model contains

a Wess-Zumino-Witten term which is antisymmetric under exchange of z and z and which

breaks SU(2, 2|4) down to PSU(2, 2|4). On the other hand, the non-linear topological A-

model is symmetric under exchange of z and z and preserves SU(2, 2|4) invariance. So it

appears that the AdS5 ×S5 sigma model and the non-linear topological A-model can only

be identified in the limit where Tαβ
c = 0 in the AdS5 × S5 model and where the radius is

infinite in the non-linear model.

4.1 Superspace action

Although the non-linear topological A-model has both N=(2,2) worldsheet supersymmetry

and SU(2, 2|4) invariance, both these symmetries can not be simultaneously made manifest.

The worldsheet supersymmetry can be made manifest by expressing the non-linear action

in superspace as

S =
1

Λ

∫
d2zd4κ

[
ΘrjΘ

jr −
1

2R2
ΘrjΘ

jsΘskΘ
kr +

1

3R4
ΘrjΘ

jsΘskΘ
ktΘtlΘ

lr + · · ·

]
(4.1)

=
R2

Λ

∫
d2zd4κ Tr

[
log

(
1 +

1

R2
ΘΘ

)]

where Θrj and Θjr are the same superfields as in (3.23), and R is the radius of this

model which is unrelated to the AdS5 × S5 radius r. In the limit R → ∞, this non-linear

model reduces to the linear topological A-model of (3.24). The non-linear action of (4.1)

is invariant under the same SU(2, 2) × SU(4) × U(1) transformations as (3.25), but the

fermionic isometries of (3.26) are modified to

δΘrj = αrj +
1

R2
ΘrkαksΘ

sj, δΘjr = αjr +
1

R2
Θjsα

skΘkr, (4.2)

which close with the bosonic isometries into the SU(2, 2|4) supergroup.

4.2 Coset action

These SU(2, 2|4) isometries can be made manifest by rescaling Θrj → RΘrj and

Θjr → RΘjr and writing the non-linear action in terms of the component fields

(θrj, θjr, Z
rj , Zjr, Yjr, Y

rj
) using a coset space construction. The coset G will be defined

to take values in PSU(2,2|4)
SU(2,2)×SU(4) , and since the coset has only fermionic elements, G can be

gauged to the form

Gk
j = δk

j , Gr
s = δr

s , Grj = θrj, Gjr = θjr. (4.3)
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In terms of the left-invariant currents JA = (G−1∂G)A and J
A

= (G−1∂G)A where A

is an SU(2, 2|4) index, the action is

S =
R2

Λ

∫
d2z

[
(J −A)rs(J −A)sr − (J −A)kj (J −A)jk (4.4)

+JjrJ
rj + Yjr(∂Z + AZ)rj + Y

rj
(∂Z −AZ)jr

]

=
R2

Λ

∫
d2z

[
J jrJ

rj + Yjr∇Zrj + Y
rj
∇Zjr + YjrZ

rkZksY
sj
− ZrjYjsY

sk
Zkr

]
(4.5)

where (AA,A
A
) are SU(2, 2) × SU(4) gauge fields, ∇Zjr = ∂Zjr + J

r
sZ

js + J
j
kZ

kr, and

∇Zrj = ∂Zrj − Js
r Zsj − Jk

j Zrk. Note that

JjrJ
rj − JjrJ

rj
= ∂JU(1) − ∂JU(1) (4.6)

is a total derivative where JU(1) is the “bonus” U(1) current, so the term
∫

d2zJ jrJ
rj is

symmetric under exchange of z and z.

Although SU(2, 2|4) invariance is manifest in the action of (4.4), N=(2,2) worldsheet

supersymmetry is not manifest. Nevertheless, one can easily construct the twisted N=(2,2)

worldsheet supersymmetry generators as

Q =

∫
dzZrjJjr, Q =

∫
dzZjrJ

rj
, b = YjrJ

rj , b = Y
rj

Jjr. (4.7)

After parameterizing G as in (4.3), the action of (4.5) coincides with the superspace

action of (4.1) after integrating out the auxiliary fields f rj and f jr.

4.3 One-loop conformal invariance

To show that the non-linear topological A-model has no one-loop conformal anomaly, one

can either use the superspace version of the action of (4.1) and compute log det(∂∂K)

where K is the Kahler potential, or one can use the coset version of the action of (4.5) and

compute the anomaly with the background field method of [20] and [4]. Absence of this

anomaly is necessary for the topological twisting to be consistent at the quantum level.

Using the superspace action of (4.1), K = Tr log(1 + ΘΘ) implies that

∂ks∂
rj

K = ∂ks[Θ
rl[(1 + ΘΘ)−1]jl ] (4.8)

= δr
s [(1 + ΘΘ)−1]jk − Θrl[(1 + ΘΘ)−1]ml Θms[(1 + ΘΘ)−1]jk

= [(1 + ΘΘ)−1]rs[(1 + ΘΘ)−1]jk.

So there is no conformal anomaly since

log det(∂ks∂
rj

K) = log det[(1 + ΘΘ)−1] + log det[(1 + ΘΘ)−1] (4.9)

= −Tr log(1 + ΘΘ) − Tr log(1 + ΘΘ)

= −Tr

[
∞∑

n=1

(−1)n+1

n
(ΘΘ)n +

∞∑

n=1

(−1)n+1

n
(ΘΘ)n

]
= 0
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where we have used that Tr[(ΘΘ)n] = −Tr[(ΘΘ)n] for n > 0.

Using the background field method for the coset action of (4.5), the matter sector of∫
d2zJjrJ

rj contributes no conformal anomaly since, when G/H is a symmetric space, the

G/H coset model has the same conformal anomaly as the principal chiral model based on

G [20]. In this case, PSU(2, 2|4)/(SU(2, 2)×SU(4)) is a symmetric space, and the principal

chiral model based on PSU(2, 2|4) has no conformal anomaly [21].

Furthermore, the ghost sector of (4.5) contributes no conformal anomaly because of

a cancellation between the Yjr∇Zrj + Y
rj
∇Zjr contribution and the YjrZ

rkZksY
sj

−

ZrjYjsY
sk

Zkr contribution. As shown in [4], the Yjr∇Zrj + Y
rj
∇Zjr term contributes

an anomaly proportional to the dual coxeter number of the group, and YjrZ
rkZksY

sj
−

ZrjYjsY
sk

Zkr contributes an anomaly proportional to the level k in the OPE of the Lorentz

currents. In the AdS5×S5 case, the relevant group was SO(4, 1)×SO(5) with dual coxeter

number 3, which cancels the level k = −3 in the OPE of the Lorentz currents constructed

from pure spinors [4]. In this case, the relevant group is SU(2, 2)×SU(4) with dual coxeter

number 4, which cancels the level k = −4 in the OPE of Lorentz currents constructed from

unconstrained bosonic spinors.

4.4 Open string sector

Just as d=3 Chern-Simons theory is described by the open string sector of a topological

A-model [13], it will be shown that the open string sector of the non-linear topological A-

model of (4.1) describes N=4 d=4 super-Yang-Mills. The open string boundary condition

for the A-model of (4.1) will be defined as

Θjr = δjkǫrsΘ
sk (4.10)

where ǫrs is an antisymmetric tensor which breaks SU(2, 2) to SO(3, 2) and δjk is a sym-

metric tensor which breaks SU(4) to SO(4). The boundary condition of (4.10) is similar

to the open string boundary condition for the Chern-Simons topological string which is

XI = δIJXJ for I, J = 1 to 3. Note that the open string boundary for the A-model is

defined by

z = z, κ+ = κ−, κ+ = κ−, (4.11)

so (4.10) implies that

θjr = δjkǫrsθ
sk, Zjr = δjkǫrsZ

sk, Yjr = δjkǫrsY
sk

. (4.12)

The boundary condition of (4.10) breaks half of the fermionic isometries and reduces

the SU(2, 2|4) supergroup of isometries to the supergroup OSp(4|4). This supergroup

contains SO(3, 2) × SO(4) bosonic isometries and 16 fermionic isometries, and is the N=4

supersymmetry algebra on AdS4.

To show that the BRST cohomology of open string states in this model describes N=4

d=4 super-Yang-Mills, it will be assumed that, as in the topological A-model for Chern-

Simons, the cohomology in the closed string sector is trivial. This assumption is reasonable

since N=(2,2) worldsheet supersymmetric D-terms are BRST-trivial, and there are naively
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no global obstructions to writing supersymmetric expressions involving fermionic super-

fields as superspace D-terms. However, since the A-model of (4.1) is constructed from

fermionic superfields in a non-conventional manner, there might be unexpected subtleties

in the model which invalidate this assumption.

With this assumption, the cohomology computation in the open string sector is in-

dependent of Λ and R in (4.1), and can be performed at Λ = 0 where only the constant

modes of Θrj contribute. Furthermore, if the closed string sector has no cohomology, the

open string physical states should be independent of SU(2, 2|4)/OSp(4|4) rotations which

modify the D-brane boundary conditions of (4.10). So although only OSp(4|4) symmetry

is manifest in the open topological A-model, the physical spectrum should be invariant

under the full SU(2, 2|4) supergroup.

After imposing the open string boundary condition of (4.10) and restricting to constant

worldsheet modes, the superspace action of (4.1) reduces to

S = R2

∫
dτd2κ Tr[D+Θ(1 + ΘΘ)−1D−Θ(1 + ΘΘ)−1] (4.13)

where Θjr = δjkǫrsΘ
sk is an N=2 superfield whose component expansion is

Θrj = θjr + κ+Y rj + κ−Zrj + κ+κ−f rj, (4.14)

and D± = ∂
κ± + κ∓ ∂

∂τ
. Alternatively, using the coset construction, the action of (4.5)

reduces to

S = R2

∫
dτ

[
ǫrsJ

rjJsj + (J −A)rs(J −A)sr − (J −A)kj (J −A)jk + Yjr

(
∂

∂τ
Z + AZ

)rj]

= R2

∫
dτ [ǫrsJ

rjJsj + Yjr(∇Z)rj + (Y Z)kj (Y Z)jk − (Y Z)sr(Y Z)rs], (4.15)

where JA = (G−1 ∂
∂τ

G)A are left-invariant currents taking values in the Lie algebra of

OSp(4|4), G(θ) takes values in the coset OSp(4|4)
SO(3,2)×SO(4) , A = ([rs], [jk], jr) labels the

OSp(4|4) generators, r = 1 to 4 labels Sp(4) indices which are raised and lowered using the

antisymmetric metric ǫrs, j = 1 to 4 labels SO(4) indices which are raised and lowered using

δjk, A
A is an Sp(4) × SO(4) worldline gauge field, and (∇Z)rj = ∂

∂τ
Zrj + Jr

s Zsj + Jj
kZrk.

The N=2 worldline supersymmetry generators for this action are

Q = ZrjJjr, b = YjrJ
rj. (4.16)

5. Cohomology of open topological A-model

Before showing that the BRST cohomology of the worldline action of (4.15) describes N=4

d=4 super-Yang-Mills, it will be useful to review the superspace description of on-shell

super-Yang-Mills.

– 17 –
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5.1 On-shell super-Yang-Mills in superspace

In ten flat dimensions, on-shell super-Yang-Mills is described by a spinor superfield Aα(x, θ)

where α = 1 to 16. This superfield can be understood as a spinor connection which

covariantizes the superspace derivative Dα = ∂
∂θα + γc

αβ
∂

∂xc to ∇α = Dα − Aα(x, θ). Since

{Dα,Dβ} = γc
αβ

∂
∂xc , it is natural to impose that Aα is defined such that [22]

{∇α,∇β} = γc
αβ∇c (5.1)

where ∇c = ∂
∂xc − Ac(x, θ) and Ac(x, θ) is a vector connection whose θ = 0 component is

the usual gauge field.

These spinor and vector superspace connections are defined up to the gauge transfor-

mation

δAα = ∇αΩ, δAc = ∇cΩ (5.2)

where Ω is a scalar superfield, and the Bianchi identity of (5.1) implies that

DαAβ + DβAα − {Aα, Aβ} = γc
αβAc. (5.3)

Equation (5.3) implies that Ac is determined from Aα and that Aα must satisfy the

constraint

(γabcde)αβ

(
DαAβ −

1

2
{Aα, Aβ}

)
= 0 (5.4)

for any five-form direction abcde [23].

The constraint of (5.4) together with the gauge invariance of (5.2) implies that Aα(x, θ)

can be gauged to the form

Aα(x, θ) = ac(x)(γcθ)α + ξβ(x)(γcθ)β(γcθ)α + · · · (5.5)

where ac(x) and ξα(x) are the on-shell gluon and gluino, and . . . involves spacetime deriva-

tives of ac(x) and ξα(x).

To describe N=4 d=4 super-Yang-Mills, one simply decomposes the d=10 vectors and

spinors into d=4 vectors, scalars and spinors in the usual manner as

θα → (θµj , θ
µ̇

j ), Aα → (Aµj , A
j
µ̇), Ac → (Am, A[jk]) (5.6)

where m = 0 to 3, µ, µ̇ = 1 to 2, j = 1 to 4, and [jk] = 1 to 6. The corresponding covariant

spinor and vector derivatives satisfy the Bianchi identities

{∇µj ,∇
k
µ̇} = δk

j σm
µµ̇∇m, {∇µj ,∇νk} = ǫµνA[jk], {∇

j
µ̇,∇

k
ν̇} =

1

2
ǫµ̇ν̇ǫhijkA[hi], (5.7)

where σm
µµ̇ are the d=4 Pauli matrices. So the N=4 d=4 spinor connections satisfy the

equations

DµjA
k
ν̇ + D

k
ν̇Aµj − {Aµj , A

k
ν̇} = δk

j σm
µν̇Am, (5.8)

D(µjAνk) − {Aµj , Aνk} = ǫµνA[jk], D
(µ̇j

A
ν̇k)

− {A
µ̇j

, A
ν̇k
} =

1

2
ǫµ̇ν̇ǫhijkA[hi],

– 18 –



J
H
E
P
0
8
(
2
0
0
7
)
0
1
1

and the gauge transformations

δAµj = ∇µjΩ, δA
j
µ̇ = ∇

j
µ̇Ω, δAm = ∇mΩ. (5.9)

Since N=4 d=4 super-Yang-Mills is superconformally invariant, the Bianchi identities

of (5.7) are valid both in flat d=4 Minkowski space and in AdS4 space. The only difference

is that in a flat background, the superspace derivatives are

Dµj =
∂

∂θµj
+ θ

µ̇
j σm

µµ̇

∂

∂xm
, D

j
µ̇ =

∂

∂θ
µ̇

j

+ θµjσm
µµ̇

∂

∂xm
, Dm =

∂

∂xm
, (5.10)

whereas in an AdS4 background,

DA = EM
A

∂

∂Y M
+ w

[mn]
A M[mn] + w

[jk]
A M[jk] (5.11)

where EM
A is the AdS4 super-vierbein, Y M = (ym, ξµj , ξ

µ̇

j ) are the AdS4 superspace co-

ordinates, wA is the AdS4 super-connection, and M[mn] and M[jk] are the SO(3, 1) and

SO(4) generators. As will be shown in subsection 5.3, the AdS4 super-vierbein and super-

connection can be naturally constructed from a supercoset OSp(4|4)
SO(3,1)×SO(4) in the same manner

as the AdS5×S5 super-vierbein and super-connection are constructed from the PSU(2,2|4)
SO(4,1)×SO(5)

supercoset.

5.2 First-quantized description of N = 4 d = 4 super-Yang-Mills

Just as d=3 Chern-Simons can be obtained by quantizing the worldline action∫
dτ(1

2
∂xI

∂τ
∂xI

∂τ
+ ψI

∂
∂τ

ψI) with the BRST operator Q = ψI ∂
∂τ

xI where I = 1 to 3,

d=10 super-Yang-Mills can be obtained by quantizing the worldline action
∫

dτ(1
2

∂xc

∂τ
∂xc

∂τ
+

pα
∂
∂τ

θα + wα
∂
∂τ

λα) with the BRST operator Q = λαdα where dα = pα + (γcθ)α
∂
∂τ

xc and

λα is a pure spinor satisfying λγcλ = 0 for c = 0 to 9 [15, 23].

At ghost-number one, the states in the cohomology of Q = λαdα are described by

V = λαAα(x, θ) where Aα(x, θ) is a spinor superfield. QV = 0 implies that λαλβDβAα = 0

where Dα = ∂
∂θα + (γcθ) ∂

∂xc , and since λγcλ = 0, λαλβDβAα = 0 implies that DαAβ +

DβAα = γc
αβAc for some Ac. Also, δV = QΩ implies that δAα = DαΩ. By comparing

with (5.3) and (5.2), one sees that Aα(x, θ) describes the linearized on-shell d=10 super-

Yang-Mills fields.

The structure of V = λαAα(x, θ) in d=10 super-Yang-Mills using the BRST operator

Q = λαdα closely resembles the structure of V = ψIAI(x) in Chern-Simons theory using the

BRST operator Q = ψI ∂
∂τ

xI . In Chern-Simons theory, QV = 0 implies that ∂IAJ−∂JAI =

0 and δV = QΩ implies that δAI = ∂IΩ. Furthermore, as in Chern-Simons theory, the

super-Yang-Mills ghost is described by the BRST cohomology at ghost-number zero, the

super-Yang-Mills fields are described by the BRST cohomology at ghost-number one, the

super-Yang-Mills antifields are described by the BRST cohomology at ghost-number two,

and the super-Yang-Mills antighost is described by the BRST cohomology at ghost-number

three [15]. This structure can be seen from the Batalin-Vilkovisky action for d=10 super-

Yang-Mills which can be written in the Chern-Simons-like form S = 〈V QV + 2
3V 3〉 using

the normalization convention that 〈(λγaθ)(λγbθ)(λγcθ)(θγabcθ)〉 = 1.
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This construction for d=10 super-Yang-Mills is easily generalized to N=4 d=4 super-

Yang-Mills by eliminating six of the ten x’s and decomposing the d=10 spinors into N=4

d=4 spinors as

θα → (θµj, θ
µ̇
j ), pα → (pµj , p

j
µ̇), λα → (λµj , λ

µ̇
j ), wα → (wµj , w

j
µ̇), (5.12)

where µ, µ̇ = 1 to 2 and j = 1 to 4. The pure spinor condition λγcλ = 0 implies that λµj

and λ
µ̇
j satisfy the constraints

λµjλ
µ̇

j = 0, (5.13)

ǫµνλµjλνk =
1

2
ǫµ̇ν̇ǫhijkλ

µ̇
hλ

ν̇
i . (5.14)

Although (5.13) and (5.14) contain ten constraints, only five of these constraints are

independent. This is easy to verify since λµjλ
µ̇

j = 0 implies that λ
ρ̇

j (ǫµνλµjλνk) = 0, which

implies that

ǫµνλµjλνk =
1

2
e2φǫhijkǫµ̇ν̇λ

µ̇

hλ
ν̇

i (5.15)

for some φ. So if the four constraints in (5.13) are satisfied, any one of the constraints

in (5.14) imply that φ = 0, which implies that the remaining five constraints in (5.14) are

satisfied.

Since the four constraints of (5.13) are almost strong enough to define an N=4 d=4

pure spinor, it will be convenient to define a “semi-pure” spinor (λ′µj , λ
′µ̇

j ) which is only

required to satisfy the four constraints of (5.13) that

λ′µj
λ
′µ̇

j = 0. (5.16)

A semi-pure spinor has 12 independent components and is related to a pure spinor

(λµj , λ
µ̇
j ) by a U(1) “R-transformation” as

λ′µj
= e

φ

2 λµj , λ
′µ̇

j = e−
φ

2 λ
µ̇

j (5.17)

where φ is determined from

e2φ =
ǫµνλ′µjλ′νk

1
2ǫhijkǫµ̇ν̇λ

′µ̇

hλ
′ν̇

i

. (5.18)

In flat d=4 Minkowski space, the worldline action for N=4 d=4 super-Yang-Mills will

be defined as

S =

∫
dτ

(
1

2

∂xm

∂τ

∂xm

∂τ
+ pµj

∂

∂τ
θµj + pj

µ̇

∂

∂τ
θ

µ̇

j + w′
µj

∂

∂τ
λ′µj

+ w′j
µ̇

∂

∂τ
λ
′µ̇

j

]
(5.19)

with the BRST operator

Q = λ′µj
dµj + λ

′µ̇

j d
j
µ̇ (5.20)

where dµj = pµj +σm
µµ̇θ

µ̇

j
∂xm

∂τ
, d

j

µ̇ = pj
µ̇ +σm

µµ̇θµj ∂xm

∂τ
, and λ′µj and λ

′µ̇

j are semi-pure spinors

satisfying (5.16). Note that Q2 = 0 since {dµj , d
k

µ̇} = δk
j σm

µµ̇
∂xm

∂τ
, and that w′

µj and w′j
µ̇

can only appear in combinations which are invariant under the gauge transformations

δw′
µj = ξmσm

µµ̇λ
′µ̇

j , δw′j
µ̇ = ξmσm

µµ̇λ′µj
. (5.21)
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The action and BRST operator of (5.19) and (5.20) are invariant under the U(1) R-

transformation

θµj → cθµj , θ
µ̇

j → c−1θ
µ̇

j , pµj → c−1pµj, pj
µ̇ → cpj

µ̇, (5.22)

λ′µj
→ cλ′µj

, λ
′µ̇

j → c−1λ
′µ̇

j , w′
µj → c−1w′

µj , w′j
µ̇ → cw′j

µ̇,

however, N=4 d=4 super-Yang-Mills does not contain such a U(1) symmetry. Since the

variable φ of (5.18) transforms under (5.22) as

φ → φ +
1

2
log c, (5.23)

φ can be interpreted as a “compensator” for U(1) R-transformations which cancels the U(1)

R-transformation of θµj and θ
µ̇

j . Physical states will therefore be defined as states of +1

ghost-number in the BRST cohomology which are invariant under the R-transformation

of (5.22).

At ghost-number one, R-invariant states are described by

V = e−
φ

2 λ′µj
Aµj(x, θe−

φ

2 , θe
φ

2 ) + e
φ

2 λ
′µ̇

j A
j
µ̇(x, θe−

φ

2 , θe
φ

2 ) (5.24)

where φ is defined in (5.18) and cancels the R-transformation of λ′ and θ. In other words,

V = λ′µj
A′

µj(x, θ′, θ
′
) + λ

′µ̇

j A
′j

µ̇(x, θ′, θ
′
) (5.25)

where A′
µj(x, θ′, θ

′
) = e−

φ

2 Aµj(x, θe−
φ

2 , θe
φ

2 ) and A
′j

µ̇(x, θ′, θ
′
) = e

φ

2 A
j
µ̇(x, θe−

φ

2 , θe
φ

2 ) are

the R-transformed versions of Aµj(x, θ, θ) and A
j
µ̇(x, θ, θ) using the R-parameter c = e−

φ

2

in (5.22). The equation QV = 0 implies that

e−φλ′µj
λ′νk

DµjAνk + eφλ
′µ̇

j λ
′ν̇

kD
k
µ̇A

k
ν̇ + λ′µj

λ
′ν̇

k(DµjA
k
ν̇ + D

k
ν̇Aµj) = 0, (5.26)

which implies using the pure spinor constraints of (5.13) - (5.18) that

DµjA
k
ν̇ + D

k
ν̇Aµj = δk

j σm
µν̇Am, D(µjAνk) = ǫµνA[jk], D

(µ̇j
A

ν̇k)
=

1

2
ǫµ̇ν̇ǫhijkA[hi], (5.27)

for some superfields Am(x, θ, θ) and A[jk](x, θ, θ). Furthermore, the gauge transformation

δV = QΩ(x, e−
φ
2 θ, e

φ
2 θ) implies that

δAµj = DµjΩ, δA
j
µ̇ = D

j
µ̇Ω, δAm = ∂mΩ. (5.28)

So when V of (5.24) is in the BRST cohomology, Aµj and A
j
µ̇ satisfy the linearized N=4

d=4 super-Yang-Mills equations and gauge invariances of (5.8) and (5.9) in flat Minkowski

space.
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5.3 N = 4 d = 4 super-Yang-Mills in AdS4

To generalize this construction to N=4 d=4 super-Yang-Mills in an AdS4 background, one

needs to modify the worldline action and BRST operator of (5.19) and (5.20) to be OSp(4|4)

invariant. This can be done using a coset construction based on OSp(4|4)
SO(3,1)×SO(4) which contains

four bosonic generators and sixteen fermionic generators. As in the AdS5×S5 construction,

it is convenient to define left-invariant currents JA = (g−1 ∂
∂τ

g)A where g(x, θ) takes values

in the OSp(4|4)
SO(3,1)×SO(4) coset, A = (m, [mn], [jk], rj) label the OSp(4, 4) generators, m = 0 to 3

label the “translation” generators, [mn] and [jk] label the SO(3, 1) and SO(4) generators,

and rj label the “supersymmetry” generators for r = 1 to 4 and j = 1 to 4. Note that the

two-component µ index corresponds to r = 1, 2, the two-component µ̇ index corresponds

to r = 3, 4, and the antisymmetric ǫrs tensor has non-zero components ǫ12 = −ǫ21 = ǫ34 =

−ǫ43 = 1.

The OSp(4|4)-invariant worldline action is

S = R2

∫
dτ

[
1

4
JmJm + ǫrsJ

rjJsj + w′
rj

(
∂

∂τ
λ′ + Aλ′

)rj

(5.29)

+(J [mn] −A[mn])(J[mn] −A[mn]) − (J [jk] −A[jk])(J[jk] −A[jk])

]

= R2

∫
dτ

[
1

4
JmJm+ǫrsJ

rjJsj+w′
rj(∇λ′)rj +(w′λ′)kj (w

′λ′)jk−(w′σmnλ′)(w′σmnλ′)

]
,

where (w′λ′)kj = w′
rjλ

′rk, (w′σmnλ′) = (σmn)rsw
′
rjλ

′sj and (∇λ′)rj = ∂
∂τ

λ′rj +
1
2J[mn](σ

[mn])rsλ
′sj + Jj

kλ′rk. This action is invariant under local SO(3, 1) × SO(4) trans-

formations where λ′ and w′ transform covariantly, and is also invariant under the BRST

transformations

δg = g(ǫλ′rj
Trj), δw′

rj = ǫJrj, (5.30)

generated by the BRST operator Q = λ′rjJrj where Trj are the fermionic generators of

OSp(4|4).

Defining the ghost-number one vertex operator as

V = λ′rj
A′

rj = λ′µj
A′

µj + λ
′µ̇

j A
′j

µ̇, (5.31)

the BRST-transformation of (5.30) implies that

QV = λ′µj
λ′νk

∇µjA
′
νk + λ

′µ̇

j λ
′ν̇

k∇
k
µ̇A

′k

ν̇ + λ′µj
λ
′ν̇

k(∇µjA
′k

ν̇ + ∇
k
ν̇A′

µj), (5.32)

where ∇µj and ∇
j
µ̇ are the covariant superspace derivatives in an AdS4 background. So

QV = 0 implies that

∇µjA
′k

ν̇ + ∇
k
ν̇A

′
µj = δk

j σm
µν̇Am, eφ∇(µjA

′
νk) = ǫµνA[jk], e−φ∇

(µ̇j
A

′ν̇k)
=

1

2
ǫµ̇ν̇ǫhijkA[hi],

(5.33)

for some superfields Am and A[jk].

Although the equations of (5.33) are difficult to solve when written in terms of AdS4

superspace variables, they can be simplified by performing a superconformal transformation
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from N=4 AdS4 superspace into N=4 d=4 Minkowski superspace. A point (ym, ξµj , ξ
µ̇

j ) in

AdS4 superspace can be represented as

gAdS4(y, ξ, ξ) = eym(Pm+Km)+ξµj(Qµj+Sk
µδjk)+ξ

µ̇

j (Q
j

µ̇+Sµ̇kδjk) (5.34)

where g(y, ξ, ξ) is an element of PSU(2, 2|4) whose bosonic generators for translations,

conformal boosts, rotations, dilatations and SU(4) R-transformations are denoted respec-

tively by [Pm,Km,M[mn],D,Rk
j ], and whose fermionic generators for supersymmetry and

superconformal transformations are denoted respectively by [Qµj , Q
j
µ̇, Sj

µ, Sµ̇j]. Under an

N=4 superconformal transformation parameterized by the PSU(2, 2|4) element Ω,

gAdS4(y, ξ, ξ) → g′AdS4
(y′, ξ′, ξ

′
) = Ω gAdS4(y, ξ, ξ) h(y, ξ, ξ) (5.35)

where

h = ecmKm+wmnM[mn]+a
j
k
Rk

j +bD+χ
µ
j S

j
µ+χµ̇jSµ̇j (5.36)

and the parameters [cm, wmn, aj
k, b, χ

µ
j , χµ̇

j ] in (5.36) are chosen such that

g′AdS4
= ey′m(Pm+Km)+ξ′µj(Qµj+Sk

µδjk)+ξ
′µ̇

j (Q
j

µ̇+Sµ̇kδjk) (5.37)

for some (y′m(y, ξ, ξ), ξ′µj(y, ξ, ξ), ξ
′µ̇
j (y, ξ, ξ)).

Similarly, a point (xm, θµj , θ
µ̇

j ) in N=4 d=4 Minkowski superspace can be represented

as

gMink(x, θ, θ) = exmPm+θµjQµj+θ
µ̇

j Q
j
µ̇ (5.38)

where under an N=4 superconformal transformation parameterized by Ω,

gMink(x, θ, θ) → g′Mink(x
′, θ′, θ

′
) = Ω gMink(x, θ, θ) h(x, θ, θ) (5.39)

and the parameters [cm, wmn, aj
k, b, χ

µ
j , χµ̇

j ] in h of (5.36) are now chosen such that g′Mink =

ex′mPm+θ′µjQµj+θ
′µ̇

j Q
j

µ̇ for some (x′m(x, θ, θ), θ′µj(x, θ, θ), θ
′µ̇
j (x, θ, θ)).

To superconformally map N=4 AdS4 superspace into N=4 d=4 Minkowski superspace,

define

gMink(x, θ, θ) = gAdS4(y, ξ, ξ) h(y, ξ, ξ) (5.40)

where the parameters [cm, wmn, aj
k, b, χ

µ
j , χµ̇

j ] in h of (5.36) are chosen such that gMink =

exmPm+θµjQµj+θ
µ̇

j Q
j

µ̇ for some functions (xm(y, ξ, ξ), θµj(y, ξ, ξ), θ
µ̇

j (y, ξ, ξ)). After writing

the AdS4 superspace variables (ym, ξµj , ξ
µ̇

j ) in terms of the Minkowski superspace variables

(xm, θµj , θ
µ̇
j ) using this superconformal map, the superfield equations of (5.33) simplify to

DµjA
′k

ν̇ + D
k
ν̇A

′
µj = δk

j σm
µν̇Am, eφD(µjA

′
νk) = ǫµνA[jk], e−φD

(µ̇j
A

′ν̇k)
=

1

2
ǫµ̇ν̇ǫhijkA[hi],

(5.41)

where Dµj and D
j
µ̇ are the flat superspace derivatives. So if one defines A′

µj(x, θ′, θ
′
) =

e−
φ
2 Aµj(x, θe−

φ
2 , θe

φ
2 ) and A

′j

µ̇(x, θ′, θ
′
) = e

φ
2 A

j
µ̇(x, θe−

φ
2 , θe

φ
2 ) as in (5.25), one finds that

DµjA
k
ν̇ + D

k
ν̇Aµj = δk

j σm
µν̇Am, D(µjAνk) = ǫµνA[jk], D

(µ̇j
A

ν̇k)
=

1

2
ǫµ̇ν̇ǫhijkA[hi], (5.42)

which are the same equations as (5.27). So the OSp(4|4)-invariant worldline action of (5.29)

also describes N=4 d=4 super-Yang-Mills.
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5.4 Equivalence with open topological A-model

It will now be shown that the worldline action of (5.29), which is based on the OSp(4|4)
SO(3,1)×SO(4)

coset together with semi-pure spinors, is related by a field redefinition to the worldline

action of (4.15), which is based on the OSp(4|4)
SO(3,2)×SO(4) coset together with unconstrained

spinors. This field redefinition combines the four x’s of the OSp(4|4)
SO(3,1)×SO(4) coset with the

12 components of the semi-pure spinors to form an unconstrained 16-component spinor

which transforms covariantly like a twistor variable under SO(3, 2) transformations. The

construction of this AdS4 twistor variable is very similar to the construction of the AdS5×

S5 twistor variable of subsection 3.2 in which the ten x’s of the PSU(2,2|4)
SO(4,1)×SO(5) coset were

combined with the 22 components of the pure spinors to form two unconstrained 16-

component spinors.

To construct the field redefinition, first decompose the OSp(4|4)
SO(3,1)×SO(4) coset as

g(x, θ) = eθrjTrjexmTm ≡ G(θ)H(x) (5.43)

where G(θ) = eθrjTrj takes values in OSp(4|4)
Sp(4)×SO(4) , H(x) = exmTm takes values in Sp(4)

SO(3,1) , and

Trj and Tm are the “supersymmetry” and “translation” generators of OSp(4|4)
SO(3,1)×SO(4) .

Now define the twistor-like variable as

Zrj = Hr
sλ′sj (5.44)

which combines the four x’s in Hr
s with the 12 components of the semi-pure spinor λ′.

Similarly, define the conjugate twistor-like variable as

Yjr = (H−1)srw
′
js. (5.45)

Using

J =

(
g−1 ∂

∂τ
g

)
=

(
H−1 ∂

∂τ
H

)
+ H−1

(
G−1 ∂

∂τ
G

)
H, (5.46)

one finds that

Yjr
∂

∂τ
Zrj = w′

rj
∂

∂τ
λ′rj

+

(
H−1 ∂

∂τ
H

)s

r

(w′λ′)rs (5.47)

= w′
rj

∂

∂τ
λ′rj

+ Js
r (w′λ′)rs −

(
G−1 ∂

∂τ
G

)s

r

(Y Z)rs

= w′
rj(∇λ′)rj + Jm(w′σmλ′) −

(
G−1 ∂

∂τ
G

)s

r

(Y Z)rs −

(
G−1 ∂

∂τ
G

)k

j

(Y Z)jk,

where (w′λ′)rs = w′
jsλ

′rj , (w′λ′)jk = (Y Z)jk = YkrZ
rj, (w′σmλ′) = (σm)rsw

′
rjλ

′sj, and

(∇λ′)rj = ∂
∂τ

λ′rj + 1
2Jmn(σmnλ′)rj + Jj

kλ′rk. Furthermore,

(w′σmnλ′)(w′σmnλ′) = w′λ′)sr(w
′λ′)rs − (w′σmλ′)(w′σmλ′) (5.48)

= (Y Z)sr(Y Z)rs − (w′σmλ′)(w′σmλ′).
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Plugging (5.47) and (5.48) into the action of (5.29), and introducing an auxiliary

variable Pm to write the JmJm kinetic term in first-order form, one finds that the action

of (5.29) can be written as

S =

∫
dτ [PmJm − PmPm + ǫrsJ

rjJsj + Yjr(∇Z)rj (5.49)

+(Y Z)kj (Y Z)jk − (Y Z)sr(Y Z)rs − Jm(w′σmλ′) + (w′σmλ′)(w′σmλ′)]

=

∫
dτ [P ′

m(Jm − 2w′σmλ′) − P ′
mP ′m + ǫrsJ

rjJsj + Yjr(∇Z)rj

+(Y Z)kj (Y Z)jk − (Y Z)sr(Y Z)rs],

where (∇Z)rj =
∂

∂τ
Zrj +

(
G−1 ∂

∂τ
G

)r

s

Zsj +

(
G−1 ∂

∂τ
G

)j

k

Zrk

and P ′
m = Pm − (w′σmλ′). (5.50)

Under the gauge transformation δw′
rj = ξm(σm)srλ

′
sj of (5.21), (5.50) implies that

δP ′
m = ξn(σmn)srλ

′rj
λ′

sj. (5.51)

For generic values of λ′rj , det(δP ′/δξ) is non-zero, so one can consistently gauge P ′
m =

0. Moreover, it is expected that the Fadeev-Popov factor from this gauge-fixing of P ′
m is

cancelled by the measure factor which converts the four x’s and 12 constrained λ′’s into

the 16 unconstrained Zrj’s.

In the gauge P ′
m = 0, the action of (5.49) reduces to

S =

∫
dτ [ǫrsJ

rjJsj + Yrj(∇Z)rj + (Y Z)kj (Y Z)jk − (Y Z)sr(Y Z)rs], (5.52)

where (5.46) implies that ǫrsJ
rjJsj = ǫrs(G

−1 ∂
∂τ

G)rj(G−1 ∂
∂τ

G)sj . Since G parameterizes

the coset OSp(4|4)
SO(3,2)×SO(4) , the worldline action of (5.52) is equivalent to the worldline action

of (4.15) coming from the open topological A-model. And since the BRST cohomology

of (5.29) describes d=4 N=4 super-Yang-Mills, this equivalence implies that the physical

states in the open sector of the topological A-model are d=4 N=4 super-Yang-Mills states.

6. Conclusions

In this paper, a new limit of the AdS5×S5 sigma model was considered in which the vector

components of the PSU(2, 2|4) metric gab → ∞ and the superspace torsion Tαβ
a → 0, while

the spinor components of the PSU(2, 2|4) metric g
αbβ

and the superspace torsion Tαa
bβ are

held fixed. This is the opposite procedure from the flat space limit, and if (T b
αβηab)/(T

bβ
αaηβ bβ

)

is interpreted as the AdS5 × S5 radius, it corresponds to taking this radius to zero.

In this limit, the PSU(2, 2|4) algebra deforms into an SU(2, 2)×SU(4) bosonic algebra

with 32 abelian fermionic isometries, and the AdS5 × S5 sigma model reduces to a linear

topological A-model constructed from fermionic N=2 superfields. The bosonic components

of these fermionic superfields involve twistor-like combinations of the x’s and pure spinor
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ghosts, and the linear topological A-model can be interpreted as the limit of a PSU(2, 2|4)-

invariant non-linear topological A-model whose open string sector describes N=4 d=4

super-Yang-Mills.

These results have many parallels with the open-closed duality found by Gopakumar

and Vafa which relates Chern-Simons theory and the resolved conifold [17]. In this open-

closed duality, Chern-Simons theory is described by the open sector of a topological A-

model [13], which is interpreted as a Coulomb branch of the closed string theory for the

resolved conifold. As pointed out in [17] and [18], the Chern-Simons/conifold duality

shares many features with the Yang-Mills/AdS5 × S5 duality, suggesting that the Ooguri-

Vafa worldsheet proof of Chern-Simons/conifold duality [18] might have a generalization

to a worldsheet proof of the Maldacena conjecture.

However, before attempting a proof of Maldacena’s conjecture using the results of this

paper, one would need to understand better both the properties of the Tαβ
a → 0 limit of

the AdS5 × S5 sigma model, and the properties of the open topological A-model for N=4

d=4 super-Yang-Mills.

For example, it is not clear that the Tαβ
a → 0 limit of the sigma model can be inter-

preted as the small AdS5×S5 radius limit, and that a separate Coulomb branch is developed

in this limit. Furthermore, although it was shown that the physical states of the open topo-

logical A-model describes N=4 d=4 super-Yang-Mills, it was not shown how to compute

perturbative super-Yang-Mills scattering amplitudes using this A-model. Hopefully, the

d=10 pure spinor formalism will provide some useful clues for computing these amplitudes.

For example, if the d=10 pure spinor measure factor 〈(λγaθ)(λγbθ)(λγcθ)(θγabcθ)〉 = 1 is

dimensionally reduced to four dimensions, the field theory action for the open A-model

S = 〈V QV +
2

3
V V V 〉 (6.1)

appears to correctly reproduce the N=4 d=4 super-Yang-Mills action [15, 16]. So using the

interaction vertex from (6.1), it should be possible to at least compute 3-point super-Yang-

Mills tree amplitudes with the open topological A-model. A much bigger challenge would

be to compute 4-point tree amplitudes using the A-model, and perhaps the twistor-string

methods of [14, 24, 25] will be useful in these computations.
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