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ABSTRACT: Using the pure spinor formalism, a quantizable sigma model has been con-
structed for the superstring in an AdSs x S® background with manifest PSU(2,2[4) invari-
ance. The PSU(2,2|4) metric g4p has both vector components g, and spinor components
gap, and in the limit where the spinor components g, are taken to infinity, the AdSs x S°
sigma model reduces to the worldsheet action in a flat background.

In this paper, we instead consider the limit where the vector components g,; are taken to
infinity. In this limit, the AdSs x S° sigma model simplifies to a topological A-model con-
structed from fermionic N=2 superfields whose bosonic components transform like twistor
variables. Just as d=3 Chern-Simons theory can be described by the open string sector of
a topological A-model, the open string sector of this topological A-model describes d=4
N=4 super-Yang-Mills. These results might be useful for constructing a worldsheet proof
of the Maldacena conjecture analogous to the Gopakumar-Vafa-Ooguri worldsheet proof
of Chern-Simons/conifold duality.
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1. Introduction

Maldacena’s conjecture [[] relating d=4 N=4 super-Yang-Mills and the superstring on
AdS5 x S° has been verified in various limiting cases. However, in the limit where d=4 N=4
super-Yang-Mills is weakly coupled, it has been difficult to verify the conjecture because
the AdSs x S® background is highly curved. Although there exists a quantizable sigma
model description of the superstring in an AdSs x S® background using the pure spinor
formalism [f], the sigma model naively becomes strongly coupled when the AdSs x S°
radius goes to zero.

In an AdSs x S° background, the sigma model action using the pure spinor formalism

has the form [B—f]

1 1 — 5—a 1—=3
S = A /d2z |:§77abJan +77a3<2J6J — ZJBJO‘> + ghost contribution (1.1)



where J* for a = 0 to 9 and (Ja,Jg) for a,g = 1 to 16 are bosonic and fermionic
PSU(2,2|4) ~

SO(in<so(E cwrents constructed from the worldsheet Green-Schwarz variables (z,6,6)
as in the Metsaev-Tseytlin construction [f], 74 is the d=10 Minkowski metric and Nof =
(701234)045' BRST invariance together with PSU(2,2|4) invariance uniquely fixes the rela-
tive coefficients in the action, so the AdSs x S® radius r only appears in the action through
the sigma model coupling constant A = o/ /r? where o is the inverse string tension. So the
sigma model seems to be strongly coupled when the AdSs x S° radius is small. However,
this conclusion may be too naive since it assumes that the PSU(2,2|4) algebra remains
undeformed when the AdSs x S® radius is taken to zero.

One limit of the sigma model which is well-understood is the d=10 flat space limit
where the AdSs x S° radius goes to infinity. Naively, one would go to the flat space limit
by simply taking A — 0, however, this limit would preserve PSU(2,2|4) invariance instead
of the desired d=10 super-Poincaré invariance. The correct way to go to the flat space

limit is to rescale the spinor component of the PSU(2,2|4) metric 9o = Map tO

9oi = "of (1.2)

in the sigma model action of ([.1), together with an appropriate rescaling of the PSU (2, 2|4)
structure constaints. In the limit where r goes to infinity, the PSU(2,2|4) algebra is
deformed into the d=10 super-Poincaré algebra and the second-order kinetic term for the
fermions in ([[.J)) blows up. Nevertheless, this limit can be taken smoothly by writing
the second-order kinetic term rnanﬁja as the first-order kinetic term J"d, + Jﬁc/l\g +

r~1ines dac% where d, and C/l\g are auxiliary fermionic variables. In the limit where r — oo,

one obtains a first-order action for the worldsheet fermions (6%, d,) and (53 , c/i\a), which is
the flat space version of the worldsheet action using the pure spinor formalism.

Since the structure constants of the algebra are related to the superspace torsions
TagY, this limiting procedure can be understood as a rescaling of the AdSs ><AS5 superspace
torsions into the flat superpace torsions. In an AdSs x S° background, Th,” and T, n3” are
non-vanishing torsions which are related by Taaaﬁgg = aﬁbnab- On the other hand, in

a

a flat background, T,3" is non-vanishing and Too® = 0. The rescaling of the structure

constants and 95 3s in (L:2) rescales the torsions such that

T b
—of flab _ . (1.3)

Taaﬁ 7755
So when r — o0, T, aaE — 0 which corresponds to flat space.

In this paper, we will consider a different limit of the AdS5 x S® sigma model in which,
instead of the spinor component of the PSU(2,2|4) metric 9B being rescaled, the vector
component g, will be rescaled as

Gab = T_lnab- (14)

Furthermore, the PSU(2,2[4) structure constants will be rescaled such that in the limit
where r — 0, the PSU(2,2|4) superalgebra is deformed into an SU(2,2) x SU(4) bosonic



algebra with 32 abelian fermionic symmetries. This corresponds to rescaling the torsions
such that ([.3) remains satisfied when r — 0, which implies that the resulting background
has non-vanishing T,,® but has T,3* = 0. Since the usual construction of supergravity
backgrounds assumes that Tos" = 754 [@, this r — 0 limit does not correspond to a
standard supergravity background.

Nevertheless, the resulting sigma model action when T,,3* — 0 is very simple and can
be expressed as a linear N=2 sigma model constructed from 16 chiral and antichiral N=2
superfields denoted by ©"7 and @jr, where r = 1 to 4 are SU(2, 2) indices and j = 1 to 4 are
SU(4) indices. Unlike the bosonic superfields in standard N=2 sigma models, ©™7 and @jr
are fermionic superfields. It is interesting that in the open-closed matrix model duality of
B, the matter variables are also described by fermions with a second-order kinetic action.
The lowest components of ©"7 and @jr are linear combinations of the 6 and 8 variables,
and the bosonic components of ©"7 and @jr are twistor-like combinations of the ten z’s
and 22 pure spinor ghosts. Just as the fermionic variables had a first-order kinetic action
in the flat space sigma model obtained by rescaling ([[.2), the bosonic variables now have
a first-order kinetic action in the N=2 sigma model obtained by rescaling ([[.4).

Moreover, this N=2 sigma model is twisted as an A-model where the pure spinor BRST
operator from the original AdS5 x S° sigma model acts in the usual topological manner as
the scalar worldsheet supersymmetry generator. So the N=2 sigma model is a topological
A-model with the worldsheet action

S = /d2zd4/~@ 9,,0" (1.5)

where (k4,R4,k_,k_) are the Grassmann parameters of the N=(2,2) superspace. This
model is invariant under the bosonic isometries SU(2,2) x SU(4) x U(1) which act on the
superfields as

5007 = iNOY +i0™0] +i%e™, 60, = —i0°A? — kO, — iv6),, (1.6)

where (AJ, Q;?, Y)) are constant parameters satisfying A} = Qg = 0, and is invariant under
the 32 abelian fermionic isometries

60" =qa", 60, =aj, (1.7)
where o'/ and aj are constant Grassmann parameters. Note that the bosonic isometries
of this model include a “bonus” U(1) symmetry [[] in addition to the SU(2,2) x SU(4)
isometries of the original AdSs x S° sigma model.

Introducing fermionic worldsheet superfields whose bosonic components are twistor-
like coordinates has been useful in classical descriptions of the superstring where kappa-
symmetry is replaced by worldsheet supersymmetry [[0—[3]. The N=2 model in this paper
shares many features with this “super-embedding” approach, however, it has the advantage
of being quantizable because of the second-order action for the fermionic superfields. Since
the second-order action for fermionic superfields is generated by the Ramond-Ramond
background, it might be possible to generalize the twistor-like methods of this paper to

more general Ramond-Ramond backgrounds.



The abelianization of the fermionic isometries of ([.7) comes from setting 7,53% = 0 and
means that the supersymmetry generators anticommute with each other. To relate this
model to super-Yang-Mills where supersymmetry acts in the conventional way, it is useful
to interpret ([.F]) as the limit of a non-linear topological A-model which is constructed such
that the isometries of ([[.§) and ([[.7) are deformed into SU(2,2|4) isometries.

The worldsheet action for this non-linear topological A-model is

1 — : 1 - g 1 — N —
S=x / d%d“n[@weﬂ ~ 373970700 + 57270,,67°6,,0"8,0" + -+ | (18)

R [ 5 1
= T/d zd nTr[log <1+ ﬁ@@>]

where R is a new parameter which, in the limit R — oo, takes the non-linear sigma
model into the linear sigma model of (.F). This non-linear action will be shown to be
one-loop conformally invariant, and is invariant under the same SU(2,2) x SU(4) x U(1)
transformations as ([.). But the fermionic transformations of ([.7) are modified to

, 1 o 1 _ _
607 = o' 4 0,0, 68, = jr + 73050 O, (1.9)

which anticommute to form the superalgebra SU(2,2|4).

It will be conjectured that the BRST cohomology in the closed string sector of this
non-linear topological A-model is trivial, which implies that the open string physical states
are independent of R and A in ([L.§). This would be similar to the topological A-model
for d=3 Chern-Simons which has physical states only in the open string sector [[J], but
would be different from the topological B-model for the twistor-string [[4] which describes
N=4 d=4 super-Yang-Mills in the open sector and N=4 d=4 conformal supergravity in the
closed sector.

In the topological A-model for d=3 Chern-Simons, the open string boundary condi-
tions are X! = X; where X! and X are chiral and anti-chiral superfields for I = 1 to
3. Similarly, the open string boundary conditions in the non-linear topological A-model
of ([.§) are ©™ = ©,,. These boundary conditions eliminate half of the 32 s and break
SU(2,2|4) invariance down to an OSp(4|4) subgroup, which is the N=4 supersymmetry al-
gebra on AdSy. In this open topological A-model, the BRST cohomology of physical states
will be shown to describe d=4 N=4 super-Yang-Mills, where the bosonic components of
©"J are interpreted as twistor coordinates constructed from the four 2’s of AdS, together
with an N=4 d=4 pure spinor.

The similarities between Chern-Simons and N=4 d=4 super-Yang-Mills are not sur-
prising since, using the pure spinor formalism, the d=10 super-Yang-Mills action can be
written in the Chern-Simons form S = (VQV + §V3> where @ is the pure spinor BRST
operator and V is the super-Yang-Mills vertex operator [I5, [§. Furthermore, there is
a gauge/geometry correspondence relating Chern-Simons and the resolved conifold which
has many features in common with the Maldacena conjecture relating N=4 d=4 super-
Yang-Mills and AdS5 x S°. The Chern-Simons/conifold correspondence was first proposed
by Gopakumar and Vafa [[[7], and was later proven using open-closed duality arguments

by Ooguri and Vafa [[Lg.



The basic idea behind the open-closed duality proof of Gopakumar-Vafa-Ooguri is that,
in a certain limit, the closed topological string theory for the resolved conifold geometry
develops a new branch corresponding to “holes” on the closed worldsheet. These holes
were then shown to correspond to the open string sector of the topological A-model that
describes d=3 Chern-Simons.

Since the open string sector of the topological A-model in this paper describes d=4
N=4 super-Yang-Mills, and since this topological A-model is related to a certain limit of
the closed superstring in an AdSs x S° background, it is natural to try to construct a
similar open-closed duality proof for the Maldacena conjecture. However, there are some
questions that need to be answered before such a proof can be attempted.

One question is to explain the interpretation of the torsion ratio of ([[.3) as the AdS x S5
radius. Although this interpretation is easily understood in the flat space limit where
r — 00, it is not obvious this interpretation is correct in the limit where r — 0. So it
is not clear that the limit discussed in this paper corresponds to weak coupling on the
super-Yang-Mills side of the duality.

A second question is to compute the complete cohomology of physical states for the
topological A-model of ([[.§). Although it will be shown that the cohomology in the open
string sector of this A-model describes d=4 N=4 super-Yang-Mills, it remains to be shown
that there are no physical states in the closed string sector of this A-model.

Finally, a third question which needs to be answered is if the open string topological
A-model in this paper can be interpreted as a branch of the closed string AdSs x S° sigma
model which emerges in the limit where T,,3* — 0. Perhaps the “bonus” U(1) symmetry
in ([1.4) will play a role in the emergence of this branch.

In section 2 of this paper, the AdS5 x S° sigma model using the pure spinor formalism
is reviewed and the flat space limit is discussed. In section 3, the AdSs x S° sigma model
is shown to reduce to a linear topological A-model in the limit where T;,3* — 0. In
section 4, this linear topological A-model is deformed into a non-linear topological A-model
with PSU(2,2|4) invariance. And in section 5, the open string sector of this non-linear
topological A-model is shown to describe d=4 N=4 super-Yang-Mills.

2. Review of pure spinor formalism in AdSs X S® background

Using the pure spinor formalism, the superstring can be quantized in any consistent d=10
supergravity background [[[J]. Unlike the Green-Schwarz formalism where the gauge-fixing
procedure of kappa-symmetry is poorly understood even in a flat background, the pure
spinor formalism is quantized using a BRST operator which can be defined in any consistent
supergravity background. In an AdSs x S° background, the BRST transformations act in
a geometric manner, which has been useful for proving the quantum consistency of this
background [f].

2.1 Sigma model action

The sigma model for the superstring in an AdSs x .S° background is manifestly PSU (2, 2|4)-



invariant and is constructed from the Metsaev-Tseytlin left-invariant currents [f]

JA = (G764, T = (G7ae)A, (2.1)

where G(m,ﬂ,é\) takes values in the coset %, A = ([ab], ¢, a, @) ranges over the
30 bosonic and 32 fermionic elements in the Lie algebra of PSU(2,2|4), [ab] labels the
SO(4,1) x SO(5) “Lorentz” generators, ¢ = 0 to 9 labels the “translation” generators, and
a,a =1 to 16 label the fermionic “supersymmetry” generators.

Although the AdSs x S° background only preserves an SO(4,1) x SO(5) subgroup of
SO(9, 1) Lorentz-invariance, it will sometimes be convenient to use SO(9,1) 16-component
notation for the spinor indices. Throughout this paper, both o and & labels a 16-component
Majorana-Weyl spinor index when it is a superscript, and labels a 16-component Majorana-
antiWeyl spinor index when it is a subscript. Even though a and & label spinors of the
same ten-dimensional spacetime chirality, it will be convenient to use two types of indices
where unhatted indices are associated with spinors coming from the left-moving sector of
the Type IIB superstring and hatted indices are associated with spinors coming from the
right-moving sector.

As in a flat background, the matrices 'y;ﬁ and (v°)*? matrices are 16 x 16 symmetric
matrices which form the off-diagonal blocks of the 32 x 32 ten-dimensional I'-matrices, and
which satisfy the anticommutation relation wa(wd)m + 7&5(76)57 = 2n°d5). The matrices
~ler-en] are constructed in the usual way by multiplying products of v¢, e.g. (V[Cd])oﬂ =

Wt[fﬁ(vd})m, and satisfy the property that 7;160203 = —725203 and 7216‘32030405 = 2302036405.
The five-form 72%234 which is in the direction of the Ramond-Ramond flux will be denoted
as 1,5-

Under SO(4,1) x SO(5), a 16-component spinor f® decomposes into "7 where 1’ = 1
to 4 is an SO(4,1) spinor index and j* = 1 to 4 is an SO(5) spinor index. (Note that
r’ and j’ indices can be raised and lowered in an SO(4,1) x SO(5) invariant manner.) If
one expresses J4 = (G719G)* as an 8 x 8 matrix which takes values in the Lie-algebra
of PSU(2,2|4), the upper right-hand off-diagonal 4 x 4 block Jj’f,/ is obtained from the
SO(4,1) x SO(5) decomposition of the 16-component spinor J* + iJ%, whereas the lower
left-hand off-diagonal 4 x 4 block JZ,, is obtained from the SO(4,1) x SO(5) decomposition
of the 16-component spinor J — i.J?.

The action in the pure spinor formalism involves left and right-moving bosonic ghosts,
(A%, w,,) and (/)\\a, Wg ), which satisfy the pure spinor constraints Ay°\ = XWC/)\\ = 0. Because
of the pure spinor constraints, w, and ws; can only appear in combinations which are
invariant under the gauge transformations

dwg = SC(VC)\)aa dg = gc(')/c/):)a- (2'2)

% coset G(z, 6, 5) is defined up to

right multiplication by a local SO(4,1) x SO(5) parameter Q2! (33,9,5) as

As in standard coset constructions, the

3G (x,0,0) = G(,0,0) (21 (2,0,0)Ti,y) (2:3)



where T, are the SO(4,1) x SO(5) generators. Under these gauge transformations, the

pure spinors are defined to transform covariantly as
1

1
A% = =2 QW (), dwa = S (yaw)a, (2.4)

. 1 - . 1 1. —
6)\a = —§Q[ab} (7[ab]>\)aa 6wa = 59[ b] ('Y[ab]w)a'

A convenient way to write the sigma model action in a manifestly gauge-invariant manner

is [0, B
S = % / 2 BUAB(JA — AT~ AP (2.5)

_ 1—1ia “ [~ 1 @
+B + wq (8)\ + 5.4[ b}’y[ab})\> + wg <({9)\ + §A[ab]’y[ab})\> :|
1 1

2 ab ab]y(Fled _ —ledy 1 e=d 1 G52 7B ja
= K/d Z|:§77[ab}[cd](<][ J— Al (T — A )+ SMeat T +Z?7ag(JﬁJ +JJ%)

1 e -3 — 1 e SPU | 2\
+§77a§(J6J — JﬁJa) + wq (8)\ + 5.4[ b}’y[ab})\> + wg <({9)\ + §A[ab]’y[ab})\> }7

where nap is the PSU(2,2[4) metric, njajjca) = MafcNap When a,b,c,d = 0 to 4, njgpjjca) =
—Ta[cNd)p When a,b,¢,d =5 t0 9, 1¢q is the d=10 Minkowski metric, 7,5 = (701234)0457 Alat]

and A“Y are worldsheet SO(4,1) x SO(5) gauge fields, and B is the Wess-Zumino term
which in an AdSs x S® background takes the simple form [R(]

1 0 -3
B=n5(77T" — 7% 7). (2.6)

Since Al%! and ./Tl[ab] satisfy auxiliary equations of motion, they can be integrated out

to obtain the action

1,01 3 5= 1-3 ,
_ 1 1 (3 2 2.
S A/d z[znchJ +77a/3<4‘] J 4J J) (2.7)

A ~ T\a 1 a ~ Ted]y
Hwa(VA)* + @a(VA)® = Sijab)jea (WAl \) (@ dl)\)},
where (VA)® = A+ 17" (3,4 )@ and (VA)® = 938 4 L7198 (v, )3, Using the Maurer-

Cartan equations, the action of (2.7) can be shown to be invariant under the BRST trans-

formation generated by [J

Q+Q= / dz Naa\“J® + / AZnaa N T (2.8)

which transform the % coset and pure spinor ghosts as

0G = G(eN*To + N°Ty),  dwa = en,J°,  6ioa = e, 5] . (2.9)

where T, and Ty are the 32 fermionic generators of PSU(2,2[4) and e is a constant Grass-

mann parameter.



This BRST invariance, together with PSU(2,2|4) invariance, fixes the relative coeffi-
cients of the terms in the sigma model action of (2.7). So, naively, the AdS5 x S° radius r
can only appear in the action through the coupling constant A = o/ /r2. However, if one
allows the PSU(2,2|4) algebra to be deformed as the value of r is changed, the r depen-
dence of the action can be more complicated and the form of the action can be modified.
For example, in the flat space limit where r — oo, the PSU(2,2|4) algebra is deformed to
the N=2 d=10 super-Poincaré algebra. As will now be discussed, this modifies the sigma
model action of (2.7) to a quadratic action.

2.2 Flat space limit

Although the naive limit as r — oo is obtained by simply taking A — 0 in the sigma model
action of (R.7), this limit would preserve PSU(2,2|4) invariance instead of the desired
N=2 d=10 super-Poincaré invariance of flat Minkowski superspace. To obtain the correct
flat space limit, one needs to rescale the PSU(2,2[4) structure constants such that when
r — 00, the PSU(2,2|4) algebra is deformed into the N=2 d=10 super-Poincaré algebra.
The non-vanishing PSU (2,2[4) structure constants 5 are
fyﬁ ’chy;% fgg = ’Ygga (2.10)
fgc = _Vcaﬁnﬁﬁ7 fgc = _fycagnﬁﬁa
f f !
fc[veﬁ] - i('yef)aynwg’ fc[il = i(ﬂeéd}?
h h h
o = 1eeB O = g0 6 + ngpo96" — nacol9sl),

1 3 1 A
f[id]a = 5(’ch)aﬁa f[éd]a = 5(%d)aﬁ,

fo_ f

f[cd]e - ne[céd}a

where the + sign in the third line is if (¢, d, e, f) = 0 to 4, and the — sign is if (¢,d, e, f) =5
to 9.

To deform these structure constants to the super-Poincaré structure constants in the

r — 00 limit, one should rescale (R.10) such that
fyﬁ ’chy;% fgg = ’Ygga (2.11)

fozﬁc = —T_l’Ycaﬁ??ﬁﬁa fgc = _r_lfycaanﬁﬁ7
1 = F 0N gl =)

aB
h h h
f[[fd}}[ef] = 770@5&95f} — 77€f55752} + 77df5£g52} - 77de5([:g5f}
Foo_ st g _ 1 B g
f[cd}e - 776[6511}’ f[cd}a = 5(70d)a6a f[cd]a = 5(’70d)625-

The metric gap should satisfy the property that ng gop is graded-antisymmetric
under permutations of [ABD], so the rescaling of (R-I1]) implies one should also rescale

9o7 = Mo 21 Glabied) = Mat] ca] tO

905 = 05> Ylablled) = T TMabcd)- (2.12)



Since the structure constants ng are proportional to the superspace torsions T4z,

the rescaling of (R.11]) implies that

Ta,@bnab

b (2.13)
Taa g5

If Tagb is fixed to satisfy Tagb = 'ygﬁ, (B.13) implies that Tacﬁ = r’lfycagnﬁg, which
is the correct r dependence since the AdS curvature Rgp.” goes like 1 /r%, and Bianchi
identities imply that Rupo” is proportional to TaoﬂTb,YB .

Since 9oB = "™ap blows up when r — oo, it is convenient to write the second-order
kinetic term for the fermions in (2.7) in the first-order form as

%/szrna[;(ngja - ijBJO‘> (2.14)
= %/dzzrna[;(%l]aja + EJB/\ JO‘>
= % /sz [7ada + J%5 + 2r71naﬁdac/i\g + irnag/dag d(JE A JQ)}
- %/d%[j“dau@c?amr1770‘3%83%/@3 (fymgjc/\JO‘/\Jﬁ—fycagjc/\Ja/\JB)}
where d, and c/l\a are auxiliary variables and the two-form JBAJe = JBTY - 7@]‘“ has

been written as the integral of a Wess-Zumino-Witten three-form using the Maurer-Cartan
equations

dJ% = fB.J° AT = r YT A T, (2.15)
77 = 00N JE =y P n (2.16)
Furthermore, the BRST operator @ + @ of (B.§) can be written as

Q+Q= /dz)\ada + /deacTa (2.17)
using the auxiliary equations of motion for d, and c/Z\a ~
When r = oo, the left-invariant currents (J¢, J%, JB T [“b]) simplify to
JE =TI = 92° + 0+°00 + 0~°00, J* = 00, JP =99, Jlabl — . (2.18)
So the action of (R.7) reduces to
1 ) 1 —d — -~ A~ — Y A~
S = N d*z 5776(11_[611 — dn00% — dg00% + wa,0A* + Wa0AY
1 J
+7 / do3 (Yeap Tl N OO N 0O° —~ 2511° A OG™ A 067) |,

which is the worldsheet action in a flat background using the pure spinor formalism. By

defining

-~

Pa=da+-, DPa=ds+--- (2.19)



where ... are functions of (z, 6, é\), this action can be written in quadratic form as [J]

1 1 —_ —_ AN —_ AN~
S = 0 / d*z [incdaxcaxd — Pa00® — D200 + wa,ON® + Wa0NY|. (2.20)

3. New limit of sigma model

In the previous section, we constructed the flat space limit of the AdS5 x 5% sigma model
in which 7.,”® — 0 and Tog® =75 5 In this section, we shall consider a different limit of the
model in which T;,3¢ — 0 and Tcoﬁ = 'ymgnﬁg . If one defines r as in (R.13)), this formally
corresponds to the limit 7 — 0 of the AdSs x S° background. However, since supergravity
backgrounds are usually defined such that T;,3¢ = 'y;ﬁ [, this limit cannot be identified
with a conventional supergravity background.

3.1 T,5° — 0 limit

To construct the sigma model in this new limit, one needs to rescale the PSU(2,2|4)

structure constants of (R.10) as

af = TVass f55 = map: (3.1)
12 = “Aeapn™, o =- cagnﬁga
£ = ey, 1 = el
f[iﬁ][e 1= eS8 neps05T) 4 o198 — 55"
Hge = 15 P = 50l foga = 30’

Furthermore, to preserve the graded-antisymmetry of ffB gcp under permutation of
[ABD], one needs to also rescale g, = 145 and Glab][cd] = Mab][cd) tO

Gab =T""Nabs  Giabljed] =T Mab[cd]- (3.2)

When r — 0, the structure constants f(fﬁ — 0 which implies that the 32 fermionic

% coset GG splits into a bosonic

coset H, for .7’ = 1 to 4 which parameterizes AdSs = 38837
SU(4)

S0 and two fermionic matrices 6”7 and Ejr
for r,j = 1 to 4. The index r = 1 to 4 labels a fundamental representation of the global
SU(2,2), and the index j = 1 to 4 labels a fundamental representation of the global SU(4).
Furthermore, the index ' = 1 to 4 labels a spinor representation of the local SO(4,1),

isometries become abelian. In this limit, the

a bosonic coset Hj, for

j,j" = 1 to 4 which parameterizes S° =

and the index j' = 1 to 4 labels a spinor representation of of the local SO(5). Note that
r’ indices can be raised and lowered with an antisymmetric SO(4, 1)-invariant tensor s
and j' indices can be raised and lowered with an antisymmetric SO(5)-invariant tensor
¢/’ Under the 32 global fermionic isometries,

007 =o', 80j, =@y, OHJ =0, §HI =0, (3:3)
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where o’/ and aj, are constant Grassmann parameters.
Since ggp = 714 blows up when r — 0, it is convenient to write the second-order
kinetic term for the bosons in the first-order form as

1 _ a abls ~led]  —led _ —d
BTN d*z [7“ 177[ab][cd}(J[ o _ Al b})(J[ I .A[ ]) +7r 177ch J ] (3.4)
1 =S —la —a — —c
- / @z | (710 — Al Py + (T = A Py + P, + TP

where [P[ab},ﬁ[ab], P., P.] are auxiliary fields. So the AdS; x S° sigma model action of (P-3)
reduces in this limit » — 0 to

1 _ b —
S =1 / dzz[(ﬂab] — APy + (T — A

) Pagy + TP + TP (3.5)

1 e =3 1 e SPU | 2\
+Zna§(JﬁJ +J5Ja)+8+wa<m+§,4[ "%[ab}x> +wa<8A+§A[“b]7[ab]A> }

where B is the Wess-Zumino-Witten term of (2:§). Since [d?2B = 3 [ d?z [ do3(YeapI® N
JENJB — WCaEJC A JEA JB), the Wess-Zumino-Witten term can be eliminated from the
action by shifting P, and P..

Furthermore, when r — 0, the currents J¢ and J4 simplify to

/

J¢ = (H'0H)% (0%),, Jd = (HT9H)% (07 when ¢,d=0 to 4, (3.6)

r s’

J¢ = (H'0H)Y (0%, Jd = (H0H)Y (ol¥)], when c¢,d=5 to 9, (3.7)
where o¢ and ¢l are 4 x 4 Pauli matrices which generate an SU(2,2) algebra when ¢ =0
to 4, and generate an SU(4) algebra when ¢ = 5 to 9. Expressing the SO(9,1) spinors J¢
and J% in terms of SO(4,1) x SO(5) spinors as J* = J™7" and J% = J"7' one finds that
when r — 0, J™7" and J"7" simplify to

I3 = (Y (HY] 007 + ¢S W Y FEL 0D, (8:8)

T

T = =Y (HY 007 — & N B H],00),.

T

Plugging these currents into (8.3), one finds that the action simplifies to
1 a abl\ TS —[ab —lab e —=C 15¢
S=+ /d%[(ﬂ B APy + (T = AN By + JP. + TP (3.9)

o 1w @ 1 A\
+aejraaﬂ+wa<aA+§A[ H[ab]A) +wa<8>\+§A[ bH[ab})\> ]

3.2 Twistor-like variables

The final step in simplifying this action is to express the pure spinors in SO(4, 1) x SO(5)
notation as A% = A" and A& = \"'7" and to define the new variables Z"/ and 7jr as

77 = HL BN 7, = (H—l);'(g—l);’xj,r, (3.10)
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where Xj/r/ = ej/k/errsl/)\\slk,. Note that Z"7 and 7jr are twistor-like variables since they
transform covariantly under the global SU(2,2) x SU(4) isometries and since they are
constructed out of the pure spinors and the ten z’s parameterized by the cosets H and H.
Similarly, one can define the conjugate twistor-like variables Y}, and Y as

Vi = (H ) (H Y wjr, Y = HH, @™ (3.11)
where wo, = wjr,r and W = €56 +@°F are the original conjugate pure spinor variables
written in SO(4,1) x SO(5) notation.

Using

Y, 029" = wadA* + (HOH) [ wjm X7+ (H'OH) w7 (3.12)

one finds that

[cd]

WaDN = Y827 — (wa AT — %(wa[cd})\)j (3.13)

where (wo \) = wjns(a,) A7 and (woegA) = wj/r/(a[cd]);’f)\s/j/ for ¢ = 0 to 4, and

(wo ) = wj/,n'(Jc)g;)\rlk/ and (wopgA) = wj/r/(a[cd])g,)\rlk/ for ¢ =5 to 9. Similarly,

i - 1 .~
D40\ =Y 0Z, — (WoN)J¢ — §(wa[cd})\)ﬂ0d}. (3.14)
So after defining
P = P — (wo)\), P =P — (@o°N), (3.15)
P/[cd} _ P[cd} . %(wa[cd})\)’ F/[cd} _ ﬁ[cd} _ %(@U[Cd]/):),

one can write the action of (B.9) as
L[ 2 [/ b [ab\ B’ —lab]  —lab]\ 1 B, T pre
s=+]d z[(J — AYF o+ (T = AN P+ JP TP (3.16)
400,007 + Y02 + Y 0Z;,|.

The shift of (B.15) implies that under the gauge transformation dw, = £°(7.\) and
§a = £(7:\)z of (£3), P! and P, must transform as

(SP(; = fcﬁr/slﬁj/k/)\rlj)\s’k/ — §C(A701234)\)7 (317)
6ﬁl€ = gceT‘/S/ej/kl/)\\,r/j}\\s/k/ — gc(}\\701234/>\\)

So assuming that (Ay%1234)) and (Ay?1234)\) are non-zero, one can use this invariance

[ab]

to gauge-fix P’ = P =o. Furthermore, integrating out A% and A" implies that

plal — P _ g,
So finally, one can write the action in quadratic form as

S = % / d22(00;,00™ + Y;,02" + Y 0Z ;). (3.18)

- 12 —



Instead of the original action containing ten x’s and 22 left and right-moving pure
spinors, (B.1§) contains 16 left-moving and 16 right-moving unconstrained bosonic spinors.
So the second-order action for x has been converted into a first-order action for ten left and
right-moving bosons which effectively removes the constraint on the pure spinors. The re-
moval of the pure spinor constraint is related to the fact that 7,3 = 0 in this background.
Since the BRST operator acts as Q = A\*V,, Q? = A2\ {V,, Vs} = A*N\T,54V 4. When
Topt = 'y;ﬁ, the pure spinor constaint Ay¢A = 0 is required for @) to be nilpotent. How-
ever, when T;,3° = 0, the nilpotence of ) does not require A* to satisfy the pure spinor
constraint.

3.3 N =2 worldsheet supersymmetry

In terms of the variables (677 ﬁjr, AN rs er,?rj), the BRST transformations are
567 =2, 00j = Zp, Y =B, OV =edf (3.19)
which are generated by Q + Q where
Q= / dzZ"100;,, Q= / dzZ ;00" (3.20)
Unlike in a flat background where it is difficult to construct b and b ghosts satisfying
{Q,b} =T and {Q,b} =T, it is easy to construct b and b ghosts in this background as
b=Y;007, b=Y"00,, (3.21)

where ,
T = 00700, +Y;0Z™, T =00"00;+Y ' 0Zj,. (3.22)

Since Yj, and Y’ have conformal weight (1,0) and (0,1), the action of (B.1§) has
A-twisted N=(2,2) supersymmetry and can be interpreted as a topological A-model. This
topological A-model can be expressed in N=(2,2) superspace by combining the component
fields into the chiral and antichiral superfields

O = 0" 4k, 7 + kY + ko ki T (3.23)
Ojr = 0jr + 7y Yjr + F_Zjr + FyF— [y,
where (k4,74 ) and (k_,%_) are the left and right-moving N=(2,2) Grassmann parameters,

and (f"7, 7],,) are auxiliary fields.
In terms of ©"7 and @JT, the action of (B.1§)

S = / d*z / d*k©;,0", (3.24)
and the global bosonic isometries act as
50" = iALOY +i0™Q] +iX0", §8;, = —i0;,Al — QO — 26, (3.25)

where (A%, Qf, Y)) are constant parameters satisfying Al = Q; = (0. Note that in addition
to the SU(2,2) x SU(4) bosonic isometries, there is an additional “bonus” U(1) symmetry

parameterized by ¥. Under the fermionic isometries of (B.d), the superfields transform as

60" ="l 60, = aj. (3.26)
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4. Non-linear topological A-model

To compute the physical states of the linear topological A-model of (B.24), it will be useful
to define a non-linear topological A-model which reduces to the linear model of (B.24) in
a certain large-radius limit. In the non-linear model, the SU(2,2) x SU(4) x U(1) bosonic
isometries will combine with the 32 fermionic isometries to form an SU(2,2|4) supergroup.
Since this supergroup includes the PSU(2,2[4) isometries of the AdS5 x S° background, it
is tempting to try to identify this non-linear topological A-model at large but finite radius
with the AdSs x S° sigma model at small but non-zero T, 5¢. However, this identification
does not seem possible since when T,,3¢ is non-zero, the AdSs x S5 sigma model contains
a Wess-Zumino-Witten term which is antisymmetric under exchange of z and zZ and which
breaks SU(2,2[4) down to PSU(2,2/|4). On the other hand, the non-linear topological A-
model is symmetric under exchange of z and z and preserves SU(2,2[4) invariance. So it
appears that the AdS5 x S° sigma model and the non-linear topological A-model can only
be identified in the limit where T(,3° = 0 in the AdS5 x 5% model and where the radius is
infinite in the non-linear model.

4.1 Superspace action

Although the non-linear topological A-model has both N=(2,2) worldsheet supersymmetry
and SU(2, 2|4) invariance, both these symmetries can not be simultaneously made manifest.
The worldsheet supersymmetry can be made manifest by expressing the non-linear action
in superspace as

1 — , 1 - g 1 — L _
S=+ / d%d“n[@rj@” ~ 5759110700 + £210,/67°6,,0"8,0" + - | (4.1)
R [, 1~
=% d“zd KTT’|:10g <1+ﬁ@@>}

where ©,; and ©;, are the same superfields as in (B23), and R is the radius of this
model which is unrelated to the AdSs x S° radius r. In the limit R — oo, this non-linear
model reduces to the linear topological A-model of (B.24). The non-linear action of (f.1)
is invariant under the same SU(2,2) x SU(4) x U(1) transformations as (B.2§), but the

'~

fermionic isometries of (B.26) are modified to

. . 1 . _ 1 — _
60" = o+ ﬁ(a”faks@sa 50, = @ + ﬁ@jsoﬁk@kr, (4.2)

which close with the bosonic isometries into the SU(2,2|4) supergroup.

4.2 Coset action

These SU(2,2[4) isometries can be made manifest by rescaling ©7 — RO™ and
@jr — R@jr and writing the non-linear action in terms of the component fields
(Hrj,gjr, er,ijr, er,?rj) using a coset space construction. The coset G will be defined
to take values in %, and since the coset has only fermionic elements, G can be

gauged to the form
Gy =6f, GL=0,, G7=07, Gj=0. (4.3)
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In terms of the left-invariant currents J4 = (G='0G)* and T = (G71OG)* where A
is an SU(2,2|4) index, the action is
RZ

§ = [ d* [(7 — AT — A — (T = AT — )] (4.4)

+ T 4 Y (07 + AZ)7 + Y07 — AZ),
R2 T ] X~ 7] i rk7; 3757 rJ 375k
=5 /d22|:erJ I+ Y N2+ YN + Y5 220 Y Y - Z27YY Z,W] (4.5)
where (.AA,.ZA) are SU(2,2) x SU(4) gauge fields, VZI" = 92" 4 J,Z7° + 7{;2’”, and
N Zyj = 0Zy; — JiZs; — JE Z,p,. Note that

Jjpd"T = T =0T y0) — 0y (4.6)

is a total derivative where Jy(;) is the “bonus” U(1) current, so the term [d?2J .77 is
symmetric under exchange of z and Z.

Although SU(2,2|4) invariance is manifest in the action of ([.4), N=(2,2) worldsheet
supersymmetry is not manifest. Nevertheless, one can easily construct the twisted N=(2,2)
worldsheet supersymmetry generators as

Q= / dz7"1J;, Q = / dzZ;,d”, b=YJ9, b=Y"J;. (4.7)

After parameterizing G as in ([L.3), the action of ([.5) coincides with the superspace
action of (L)) after integrating out the auxiliary fields 77/ and ?jr.

4.3 One-loop conformal invariance

To show that the non-linear topological A-model has no one-loop conformal anomaly, one

can either use the superspace version of the action of (f.I]) and compute log det(99K)

where K is the Kahler potential, or one can use the coset version of the action of ([L.5) and

compute the anomaly with the background field method of [R(] and [[f]. Absence of this

anomaly is necessary for the topological twisting to be consistent at the quantum level.
Using the superspace action of (f.1), K = Tr log(1 + ©0) implies that

00 K = 04,[0"[(1+80) 7 1]/] (4.8)

= 37[(1+©0) 1 — 0"[(1+©6) ! |"O,.[(1 +©0) )]
= [(1+00)7'5[(1+0e) ).

So there is no conformal anomaly since

log det(@ksgij) = log det[(1+©6) '] +1log det[(1+00)7!] (4.9)
= —Tr log(1+©6) — Tr log(l + 60)
_ - (_1)n+1 N\ - (_1)n+1 oo\t |
=-Tr|Y) ~—~—(08) +;7n ©0)"| =0

n
n=1

,15,



where we have used that Tr[(©0)"] = —Tr[(©0)"] for n > 0.

Using the background field method for the coset action of ([L.H), the matter sector of
i d2z7jTJ "J contributes no conformal anomaly since, when G/H is a symmetric space, the
G/H coset model has the same conformal anomaly as the principal chiral model based on
G [RQ). In this case, PSU(2,2|4)/(SU(2,2) x SU(4)) is a symmetric space, and the principal
chiral model based on PSU(2,2|4) has no conformal anomaly [R]].

Furthermore, the ghost sector of ([£.5) contributes no conformal anomaly because of
a cancellation between the ervZ” + ?r]V7jr contribution and the erZrkiksvsj —
Zm YjS?SkaW contribution. As shown in [, the ervZ”j + ?T]Ver term contributes
an anomaly proportional to the dual coxeter number of the group, and YjTZ”k'st?sj —
AL Y; 3?8k7kr contributes an anomaly proportional to the level k£ in the OPE of the Lorentz
currents. In the AdSs x S° case, the relevant group was SO(4, 1) x SO(5) with dual coxeter
number 3, which cancels the level kK = —3 in the OPE of the Lorentz currents constructed
from pure spinors [[f]. In this case, the relevant group is SU(2,2) x SU(4) with dual coxeter
number 4, which cancels the level k = —4 in the OPE of Lorentz currents constructed from
unconstrained bosonic spinors.

4.4 Open string sector

Just as d=3 Chern-Simons theory is described by the open string sector of a topological
A-model [[[J], it will be shown that the open string sector of the non-linear topological A-
model of ([L.1]) describes N=4 d=4 super-Yang-Mills. The open string boundary condition
for the A-model of (1) will be defined as

0, = 66,0 (4.10)

where €, is an antisymmetric tensor which breaks SU(2,2) to SO(3,2) and J;;, is a sym-
metric tensor which breaks SU(4) to SO(4). The boundary condition of ({.10) is similar
to the open string boundary condition for the Chern-Simons topological string which is
X7 = 0ryX7 for I,J =1 to 3. Note that the open string boundary for the A-model is
defined by

2=7%, Ky =FR_, FRy=FK_, (4.11)

so ([.10) implies that
O = Si0rs0°F,  Zjr = ikers 2%, Vi = jp60sY - (4.12)

The boundary condition of ([L.1() breaks half of the fermionic isometries and reduces
the SU(2,2[4) supergroup of isometries to the supergroup OSp(4|4). This supergroup
contains SO(3,2) x SO(4) bosonic isometries and 16 fermionic isometries, and is the N=4
supersymmetry algebra on AdSy.

To show that the BRST cohomology of open string states in this model describes N=4
d=4 super-Yang-Mills, it will be assumed that, as in the topological A-model for Chern-
Simons, the cohomology in the closed string sector is trivial. This assumption is reasonable
since N=(2,2) worldsheet supersymmetric D-terms are BRST-trivial, and there are naively
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no global obstructions to writing supersymmetric expressions involving fermionic super-
fields as superspace D-terms. However, since the A-model of ([.1)) is constructed from
fermionic superfields in a non-conventional manner, there might be unexpected subtleties
in the model which invalidate this assumption.

With this assumption, the cohomology computation in the open string sector is in-
dependent of A and R in (f.I]), and can be performed at A = 0 where only the constant
modes of ©"J contribute. Furthermore, if the closed string sector has no cohomology, the
open string physical states should be independent of SU(2,2|4)/ OSp(4]4) rotations which
modify the D-brane boundary conditions of (.10). So although only OSp(4|4) symmetry
is manifest in the open topological A-model, the physical spectrum should be invariant
under the full SU(2,2|4) supergroup.

After imposing the open string boundary condition of (.1() and restricting to constant
worldsheet modes, the superspace action of @) reduces to

S = RZ/de% Tr[D,O(1+00)'D_6(1+66)™ (4.13)

where 0, = 5jkers®‘9k is an N=2 superfield whose component expansion is
O =0 4k Y 4k 2t kik fT (4.14)

and Dy = H% + /ﬁ%. Alternatively, using the coset construction, the action of (@)
reduces to

o ) rj
S = R?/dT [ersJ”J” +(J = AT =AY — (] — AT — A +er<a%Z+AZ> ]

= R? / drlersJ" T + Y (VZ)7 + (YZ)M(Y 2)], — (YZ)3(Y 2)1), (4.15)

where J4 = (G_la%G)A are left-invariant currents taking values in the Lie algebra of
OSp(4]4), G(#) takes values in the coset W%&‘U’ A = ([rs],[jk],jr) labels the
OSp(4]4) generators, r = 1 to 4 labels Sp(4) indices which are raised and lowered using the
antisymmetric metric €%, j = 1 to 4 labels SO(4) indices which are raised and lowered using
Sjk, A4 is an Sp(4) x SO(4) worldline gauge field, and (VZ)7 = L2779 + Jr 2z + Jl z7*,
The N=2 worldline supersymmetry generators for this action are

Q=2"J,, b=Y;,J. 4.16
J J

5. Cohomology of open topological A-model
Before showing that the BRST cohomology of the worldline action of (4.15) describes N=4

d=4 super-Yang-Mills, it will be useful to review the superspace description of on-shell
super-Yang-Mills.
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5.1 On-shell super-Yang-Mills in superspace

In ten flat dimensions, on-shell super-Yang-Mills is described by a spinor superfield A, (z, 0)
where « = 1 to 16. This superfield can be understood as a spinor connection which
covariantizes the superspace derivative D, = 80% + 736% to Vo = Dy — An(x,0). Since
{Dq,Ds} = 'yfw%, it is natural to impose that A, is defined such that [R7

{Va,Vs} =154Ve (5.1)

where V. = % — Ac(z,0) and A.(z,0) is a vector connection whose § = 0 component is
the usual gauge field.
These spinor and vector superspace connections are defined up to the gauge transfor-

mation

§Aq = Vo, 6A.= V.0 (5.2)

where (Q is a scalar superfield, and the Bianchi identity of (f.1]) implies that
DozAﬁ + DﬁAoz - {Aom Aﬁ} = 736140- (5'3)

Equation (p.J) implies that A, is determined from A, and that A, must satisfy the

constraint

(,Yabcde)ozﬁ <DaAﬁ _ %{Aa’ A5}> =0 (54)

for any five-form direction abede [RJ].
The constraint of (5.4) together with the gauge invariance of (5.9) implies that A, (x, #)
can be gauged to the form

Aa(2,0) = ac(x)(v°0)a + fﬁ(x)(')’ca)ﬁ(%e)a T+ (5.5)

where a.(z) and £*(z) are the on-shell gluon and gluino, and ... involves spacetime deriva-
tives of a.(x) and £¥(x).

To describe N=4 d=4 super-Yang-Mills, one simply decomposes the d=10 vectors and
spinors into d=4 vectors, scalars and spinors in the usual manner as

0% — (0M,05), Aq— (Au, AL), A — (Am, Ajyg) (5.6)
where m =0to 3, u, 1 =1t02,j =1to4, and [jk] =1 to 6. The corresponding covariant

spinor and vector derivatives satisfy the Bianchi identities

(Vi Vid = 500 Vm: Vi Vor} = ey, V3 Vi) = geuwe™ Ay, (5.7)

where O'ZL are the d=4 Pauli matrices. So the N=4 d=4 spinor connections satisfy the
equations
—k  —k —k L m
=i~k —jij —vk 1 o his
Dy Avky — {Aui» Ak} = euAyy, DA™ — (@M A" = St Ay,
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and the gauge transformations
0Au; = Vi@, 64, = V59, §Am = Vil (5.9)

Since N=4 d=4 super-Yang-Mills is superconformally invariant, the Bianchi identities
of (5.7) are valid both in flat d=4 Minkowski space and in AdSy space. The only difference

is that in a flat background, the superspace derivatives are

0 i g O —j 0 0 0
Dyj = Zam5 + 959 gmm ﬂ:aT"’_Hwawa m Dm=5-0 (5.10)

whereas in an AdS, background,

D4 + w[mn}M[mn] + wgk]M[]k} (5.11)

0
=EM
A gy M
where E% is the AdSy super-vierbein, YM = (y™, ¢ri ,E?) are the AdS, superspace co-
ordinates, w4 is the AdSy super-connection, and M, and M, are the SO(3,1) and
SO(4) generators. As will be shown in subsection 5.3, the AdSy super-vierbein and super-

: OSp(449) . .
connection can be naturally constructed from a supercoset g5 B.1)xso( N the same manner

as the AdS5x S° super-vierbein and super-connection are constructed from the %

supercoset.

5.2 First-quantized description of N =4 d = 4 super-Yang-Mills

Just as d=3 Chern-Simons can be obtained by quantizing the worldline action
[ dr( %%””T 9rp 4 ¢Ia Y1) with the BRST operator Q = ¢I%x1 where I = 1 to 3,
d=10 super—Yang—Mllls can be obtained by quantizing the worldline action [ dr %%’”T Oz¢ 4
Dex aTHO‘ + waa AY) with the BRST operator Q = A“d, where dy = p, + (vcﬁ)agx and
A% is a pure spinor satisfying My°A = 0 for ¢ = 0 to 9 [[[§, BJ].

At ghost-number one, the states in the cohomology of Q = A%d, are described by
V =\*A4,(z, 0) where A (x 0) is a spinor superfield. QV = 0 implies that A*A\* DA, = 0
where D, = 89@ + (v c9) 55, and since Ay°A = 0, )\a)\ﬁDﬁAa = 0 implies that D,Ag +
DgA, = WaﬁA for some A.. Also, 6V = Qf) implies that A, = D,f). By comparing
with (b.3) and (b.2), one sees that A, (z,6) describes the linearized on-shell d=10 super-
Yang-Mills fields.

The structure of V= A\*A,(z,0) in d=10 super-Yang-Mills using the BRST operator
Q = \“d,, closely resembles the structure of V = 1)’ A7(x) in Chern-Simons theory using the
BRST operator (Q = 1/11 —27. In Chern-Simons theory, QV = 0 implies that 0;A;—0;Ar =
0 and 0V = Q2 implies that §A; = 0;). Furthermore, as in Chern-Simons theory, the
super-Yang-Mills ghost is described by the BRST cohomology at ghost-number zero, the

super-Yang-Mills fields are described by the BRST cohomology at ghost-number one, the
super-Yang-Mills antifields are described by the BRST cohomology at ghost-number two,
and the super-Yang-Mills antighost is described by the BRST cohomology at ghost-number
three [L3]. This structure can be seen from the Batalin-Vilkovisky action for d=10 super-
Yang-Mills which can be written in the Chern-Simons-like form S = (VQV + §V3> using
the normalization convention that {(Ay%0)(Ay°0)(Av°0)(0vapcd)) = 1.
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This construction for d=10 super-Yang-Mills is easily generalized to N=4 d=4 super-
Yang-Mills by eliminating six of the ten z’s and decomposing the d=10 spinors into N=4
d=4 spinors as

6% — (0M9.,85), pa— (uinBh)s A*— W9 N)), wa — (wyy, ), (5.12)

where p, 1 =1 to 2 and j = 1 to 4. The pure spinor condition Ay“A = 0 implies that Y

and Xy satisfy the constraints
NI = 0, (5.13)
. 1 e
Ew/)\‘u])\yk = §€ﬂpehmk}\g)\i . (514)

Although (F.13) and (F.14) contain ten constraints, only five of these constraints are
independent. This is easy to verify since A%/ X;L = 0 implies that X?(EW)\M AVE) = 0, which
implies that

: 1 o
AN INE = §e2¢ehw’f%xp§ (5.15)
for some ¢. So if the four constraints in (f.13) are satisfied, any one of the constraints
in (5.14) imply that ¢ = 0, which implies that the remaining five constraints in (§.14) are
satisfied.
Since the four constraints of (b.13) are almost strong enough to define an N=4 d=4

pure spinor, it will be convenient to define a “semi-pure” spinor (\'* J ,X/g) which is only
required to satisfy the four constraints of (5.13) that

XWK’? =0. (5.16)

A semi-pure spinor has 12 independent components and is related to a pure spinor
(W,Xg.‘) by a U(1) “R-transformation” as

S A YA DY, (5.17)
where ¢ is determined from
V)\lﬂj \k
e = T (5.18)
e T,

In flat d=4 Minkowski space, the worldline action for N=4 d=4 super-Yang-Mills will
be defined as

10z™ Oxyy, Q. _i 0=p 0 P, 0 <
S=[dr|=——— — 0" + ) —0. L=\ M\ 5.19
/ T<2 or or +pw87’ +p“87’ ]+ww(97' +w“(97' J ( )
with the BRST operator .
: i
where d; = p,; + 0%55‘9(;')’3—;”, Eﬂ = ﬁ{t + Ufﬁﬂ“j ag—;”, and V" and X,;»L are semi-pure spinors
satisfying (F.16). Note that Q% = 0 since {duj,aﬁ} = 5;‘?0%%”—;", and that w',; and @’ﬁ

can only appear in combinations which are invariant under the gauge transformations

—1f
5w'm = me'm A

NG, 0w = Enol NP (5.21)
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The action and BRST operator of (5.19) and (5.20) are invariant under the U(1) R-

transformation

‘ ‘ G g 1 o
ori s cpri, 0 — 17", Puj = € Dujs Dy, = (5.22)
14 11 ~7H —1yH r —1,0 ] Tl
AT — e Aj = Ay, w ;= c Wy, W'y, — Wy,

however, N=4 d=4 super-Yang-Mills does not contain such a U(1) symmetry. Since the
variable ¢ of (p.1§) transforms under (f.29) as

1
O — o+ 3 log ¢, (5.23)

¢ can be interpreted as a “compensator” for U(1) R-transformations which cancels the U(1)
R-transformation of #* and 57. Physical states will therefore be defined as states of +1
ghost-number in the BRST cohomology which are invariant under the R-transformation
of (520).

At ghost-number one, R-invariant states are described by

[ 2} [ 2}
2 2 2 2

V= e_%)\’“jAM-(x,Ge_ ,0e2) + B%X,?Z£($,96_ ,0e2) (5.24)

where ¢ is defined in (p.1§) and cancels the R-transformation of A" and 6. In other words,
V=XNA (2,0,0) + N A (2,0.0) (5.25)

2} L)
2 2

where A;j(x,ﬁ',gl) = e_%Am(x,Ge_ ,0e2) and Zli(x,ﬁ’,g/) = e%Z£(x,06_%,§e%) are

the R-transformed versions of A,;(z,0,0) and Zi(w, 0,0) using the R-parameter ¢ = e %

in (5.29). The equation QV = 0 implies that

—/ L1V

e ONINF D, Ak + NN DAL + NN (D A + DiAyg) = 0, (5.26)

which implies using the pure spinor constraints of (5.13) - (F.1§) that

Dy Ay + DyAuy = 6507 Ay DijAury = €Ay, DA™ =

1 oo hi
Ko, e Ay, (5.27)

for some superfields A,,(z,6,0) and Apjn (z,6,0). Furthermore, the gauge transformation
oV = QU (z, e_%é?, G%E) implies that

§Au = DpiQ, S, =D, §Am = 0. (5.28)

So when V of (5.24) is in the BRST cohomology, A,y and Z{L satisfy the linearized N=4
d=4 super-Yang-Mills equations and gauge invariances of (f.§) and (5.9) in flat Minkowski
space.
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5.3 N =4 d =4 super-Yang-Mills in AdS,

To generalize this construction to N=4 d=4 super-Yang-Mills in an AdS4 background, one

needs to modify the worldline action and BRST operator of (5.19) and (F.20) to be OSp(4/4)
0Sp(4[4) . )

m which contains

four bosonic generators and sixteen fermionic generators. As in the AdS5x .S% construction,

invariant. This can be done using a coset construction based on

it is convenient to define left-invariant currents J4 = (g_1% g)” where g(z,0) takes values
in the %% coset, A = (m, [mn], [jk],r7) label the OSp(4,4) generators, m = 0 to 3
label the “translation” generators, [mn] and [jk] label the SO(3,1) and SO(4) generators,

and rj label the “supersymmetry” generators for r = 1 to 4 and j = 1 to 4. Note that the
two-component p index corresponds to r = 1,2, the two-component i index corresponds
to r = 3,4, and the antisymmetric €, tensor has non-zero components €10 = —eo; = €34 =
—e43 = 1.

The OSp(4]4)-invariant worldline action is

1 . ) il
S = RQ/dT[ZJme Fers TV (EA’ + AA’) (5.29)

+(JI — AT (Fpn) = Apny) = (JI = AT (50 — A })}
= R? / dTBJmeJrersJ’“jJsj+w'rj(w')”' +(w')\/)§“‘(w')\')i—(w'am”)\')(wlamn)\/)},

where (w’)\’)? = w’rj)\’rk, (w'e™)) = (am")gw’rj/\”j and (VN7 = %)‘/M +
%J[mn}(a[mnl)g/\’”’ + Jg)\’rk. This action is invariant under local SO(3,1) x SO(4) trans-
formations where )\’ and w’ transform covariantly, and is also invariant under the BRST

transformations ‘
59 = g(eN"T,;), ow'yj = el (5.30)

generated by the BRST operator @ = NI Jrj where T.; are the fermionic generators of
OSp(4/4).

Defining the ghost-number one vertex operator as
Vo NAL = N A+ XA 5.31
= rj — pi T AGA s (5.31)
the BRST-transformation of (5.30) implies that

QV = NPINVEG A g+ NN VA + NN (9, A+ VEAL, (5.32)

where V; and V{L are the covariant superspace derivatives in an AdS4 background. So
QV = 0 implies that

— (pi—Dk 1 .. ...
e_¢V(wA, ) = §euyehzjkA[hi]7

(5.33)

—tk =k k _m
Vi Ay + VAl = 050 5 Am e¢V(W~ALk) = € Alji);

for some superfields A, and Ap;y).
Although the equations of (5.33) are difficult to solve when written in terms of AdS,
superspace variables, they can be simplified by performing a superconformal transformation
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from N=4 AdS, superspace into N=4 d=4 Minkowski superspace. A point (3™, &, E;‘) in

AdSy4 superspace can be represented as

sy (4, €,F) = U™ (Pmc+Kom )+ (Quy+S}i050)+E) QS 7) (5.34)

where g(y,&,€) is an element of PSU(2,2|4) whose bosonic generators for translations,
conformal boosts, rotations, dilatations and SU(4) R-transformations are denoted respec-
tively by [P, K, M [mn]> D> R;?], and whose fermionic generators for supersymmetry and

superconformal transformations are denoted respectively by [Qm,@i, Sﬂ,gﬂj]. Under an
N=4 superconformal transformation parameterized by the PSU(2,2|4) element €2,

9AdS, (ya 3 g) - gj4dS4 (y/a éla g/) = 9AdS, (y’ 5’ E) h(y’ 5’ E) (535)

where j S
B = & Km W™ My ), RE+HD DX S AX S (5.36)

and the parameters [¢™, w™", ai, b, X? ,X? | in (b.3d) are chosen such that

9Ads, = U™ (Pt Kon)+9 (Q i +886,) +E ] (@) +5 1 67%) (5.37)

for some (3™ (y,,€), €™ (y,€,9), €' (4, &, 9))-
Similarly, a point (z™, " ,5?) in N=4 d=4 Minkowski superspace can be represented
as L
IMink(@,8,8) = e Pt 0 Qui 00 (5.38)

where under an N=4 superconformal transformation parameterized by (2,

IMink(7,0,0) — g{\/ﬁnk(x',ﬁ',@/) = Q gMink(,0,0) h(x,0,0) (5.39)
and the parameters [¢", w™", ai, b, X? ,X? ] in h of (5.36) are now chosen such that g, =
&' P09 Qui+0] T for some ('™ (z,0,0),0 (w,&,g)ﬁ;#(x,ﬁ,@)).

To superconformally map N=4 AdS, superspace into N=4 d=4 Minkowski superspace,
define

9viink (2, 0,0) = gags, (v, €,€) My, &) (5.40)
where the parameters [cm,wm",ai,b, X?,Y?] in h of (p.30) are chosen such that gynk =
" Prt049Qui+05Q% for some functions (mm(y,g,g),H“j(y,g,g)ﬁ?(y,g,g)). After writing
the AdS, superspace variables (y™, &*, E?) in terms of the Minkowski superspace variables

(x™, o1 ,5?) using this superconformal map, the superfield equations of (.33) simplify to

-k =k k —¢miR) 1 hiik
Dy Ay + DyA =65 A, e¢D(MA'Vk) = ewAyy, e DA = Eewe IE Al
‘ (5.41)
where D,,; and Ei are the flat superspace derivatives. So if one defines ALj (z,0' ,gl) =
engM-(x,Ge*%,?e%) and Z%(x,@’,?l) = G%Zf;(ﬂ:,ﬂefg,?e%) as in (p.24), one finds that

Dy Ay + DyAy = 6507 Ay DiujAuky = €Ay, DA™ =

1 oo his
Ha e Ay, (5.42)

which are the same equations as (5.27). So the OSp(4|4)-invariant worldline action of (f.29)
also describes N=4 d=4 super-Yang-Mills.
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5.4 Equivalence with open topological A-model

It will now be shown that the worldline action of (§.29), which is based on the %%

coset together with semi-pure spinors, is related by a field redefinition to the worldline
action of ({.15), which is based on the ~OSpU - hget together with unconstrained

SO(3,2)xSO(@)
spinors. This field redefinition combines the four z’s of the %% coset with the

12 components of the semi-pure spinors to form an unconstrained 16-component spinor
which transforms covariantly like a twistor variable under SO(3,2) transformations. The
construction of this AdSy twistor variable is very similar to the construction of the AdS5 x
S5 twistor variable of subsection 3.2 in which the ten ’s of the % coset were
combined with the 22 components of the pure spinors to form two unconstrained 16-
component spinors.

To construct the field redefinition, first decompose the % coset as

g(2,0) = " Triegt " Tm = G(0)H (z) (5.43)
where G(#) = ¢’ T takes values in %, H(zx) = e*"Tm takes values in SS%(;%), and

T,; and T, are the “supersymmetry” and “translation” generators of #%.

Now define the twistor-like variable as
7" = HT\NY (5.44)

which combines the four x’s in H! with the 12 components of the semi-pure spinor X
Similarly, define the conjugate twistor-like variable as

}/}r = (Hil)iwljs- (545)
Using
0 0 0
_ (1Y ) _ -1 9 1 -1 9
I R e VA
one finds that
0 . o . B s
Yooy Yy -1 9 ININT
YJT@TZ wr]aT)\ + <H 87H>r(w)\)s (5.47)

= WX RN - (67 56) (v,

T

s k
= W (TN 4 ) - (67526 (2 - (67526 vz,
J

T

where (W' XN)2 = w/j N, (WN)L = (YZ)] = Y 2™, (w'o™N) = (6™)ow! ;N and

(VNI = %)\'Tj + 3T (0 V)T + Jg)\/rk. Furthermore,

(W'e™NY (W' o N) = W' N)E(W' X)L — (w'oe™N) (W o) (5.48)
= (YZ2):(YZ), — (w'o™N)(wonN).

S
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Plugging (5.47) and (5.48) into the action of (f.29), and introducing an auxiliary

variable P,, to write the .J,,,J™ kinetic term in first-order form, one finds that the action
of (p.29) can be written as

S = / Ar[ P J™ — Py P™ + €5 J"7 T + Y;,(VZ)™ (5.49)
+Y2)EYZ), - (Y2 (YZ), — J™(w o) + (w'o™N) (w'opnN))]
— / dr[P, (J™ = 2w'a™N) — Pl P"™ + €5 J7 T + Y;,(VZ)

+YZ)HY Z)], — (YZ)i(Y 2)),

here (VZ)W’—QZ%r «19¢ TZSJ‘+ 196 ]Z”f
A - or or ), or )4

and P! = P, — (w'o,\). (5.50)
Under the gauge transformation dw’,; = £™(0y,)3N ; of (B.21), (B.50) implies that
P, = € (0mn) SN N ;. (5.51)

For generic values of NI , det(0P’/§€) is non-zero, so one can consistently gauge P, =
0. Moreover, it is expected that the Fadeev-Popov factor from this gauge-fixing of P/, is
cancelled by the measure factor which converts the four x’s and 12 constrained \’s into
the 16 unconstrained Z"7’s.

In the gauge P/, = 0, the action of (f.49) reduces to

S = / drlepsJ T + Y, (VZ)7 + (YZ)M(Y 2)], — (YZ)i(Y 2)1), (5.52)

where (f.46) implies that €,,J"7J% = ers(G_la%G)rj(GA%G)sj. Since G parameterizes
S()((?’f;)i%())(zl)’ the worldline action of (5.52) is equivalent to the worldline action
of ({.19) coming from the open topological A-model. And since the BRST cohomology
of (5.29) describes d=4 N=4 super-Yang-Mills, this equivalence implies that the physical

states in the open sector of the topological A-model are d=4 N=4 super-Yang-Mills states.

the coset

6. Conclusions

In this paper, a new limit of the AdSs x S® sigma model was considered in which the vector
components of the PSU (2, 2|4) metric gq, — 0o and the superspace torsion T,g* — 0, while

the spinor components of the PSU(2,2|4) metric 9p and the superspace torsion T,,° are

held fixed. This is the opposite procedure from the flat space limit, and if (7 7ab)/ (Tfan 53)
is interpreted as the AdSs x S° radius, it corresponds to taking this radius to zero.

In this limit, the PSU(2,2|4) algebra deforms into an SU(2,2) x SU(4) bosonic algebra
with 32 abelian fermionic isometries, and the AdSs x S® sigma model reduces to a linear
topological A-model constructed from fermionic N=2 superfields. The bosonic components
of these fermionic superfields involve twistor-like combinations of the z’s and pure spinor
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ghosts, and the linear topological A-model can be interpreted as the limit of a PSU(2,2|4)-
invariant non-linear topological A-model whose open string sector describes N=4 d=4
super-Yang-Mills.

These results have many parallels with the open-closed duality found by Gopakumar
and Vafa which relates Chern-Simons theory and the resolved conifold [[7]. In this open-
closed duality, Chern-Simons theory is described by the open sector of a topological A-
model ], which is interpreted as a Coulomb branch of the closed string theory for the
resolved conifold. As pointed out in [[4] and [1§], the Chern-Simons/conifold duality
shares many features with the Yang-Mills/AdSs x S° duality, suggesting that the Ooguri-
Vafa worldsheet proof of Chern-Simons/conifold duality [[§] might have a generalization
to a worldsheet proof of the Maldacena conjecture.

However, before attempting a proof of Maldacena’s conjecture using the results of this
paper, one would need to understand better both the properties of the T,,3* — 0 limit of
the AdSs x S° sigma model, and the properties of the open topological A-model for N=4
d=4 super-Yang-Mills.

For example, it is not clear that the 7,3 — 0 limit of the sigma model can be inter-
preted as the small AdS5x S® radius limit, and that a separate Coulomb branch is developed
in this limit. Furthermore, although it was shown that the physical states of the open topo-
logical A-model describes N=4 d=4 super-Yang-Mills, it was not shown how to compute
perturbative super-Yang-Mills scattering amplitudes using this A-model. Hopefully, the
d=10 pure spinor formalism will provide some useful clues for computing these amplitudes.
For example, if the d=10 pure spinor measure factor ((Ay20)(Ay*0)(A\y°0)(074pc0)) = 1 is
dimensionally reduced to four dimensions, the field theory action for the open A-model

S =(VQV + §VVV> (6.1)

appears to correctly reproduce the N=4 d=4 super-Yang-Mills action [[[§, [f]. So using the
interaction vertex from (f.1), it should be possible to at least compute 3-point super-Yang-
Mills tree amplitudes with the open topological A-model. A much bigger challenge would
be to compute 4-point tree amplitudes using the A-model, and perhaps the twistor-string
methods of [[4, 24, BF will be useful in these computations.
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